

2020-2021 Product Catalog

Environmental and Process Water

Proficiency Testing and Reference Materials

Your Partner In Quality

COMMITMENT TO QUALITY

For more than 40 years, ERA™ has been providing analytical laboratories and organizations with the products and services required to eliminate inaccurate results. Laboratories globally rely on ERA's products to be integrated into their quality programs to ensure total confidence in their data analysis.

Our comprehensive range of Proficiency Testing (PT) programs and Certified Reference Materials (CRMs) are designed to provide you with confidence that your data is valid and defensible. Whether complying with regulatory requirements or internal quality programs, you can depend on ERA to support your efforts in providing sound, well documented data so you can have confidence in your decisions.

Then and Now – 25 Years in Continued Quality Commitment

(left to right)
Lisa Berry, Dale Shallenberger, Curtis Wood, and Craig Huff

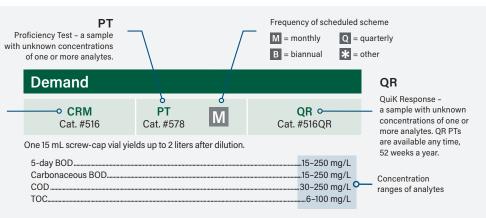
CONTENTS

Environmental

roficien	cy Testing Scheme Schedule 2020-216
roducts	
	Water Pollution8
	■ DMR-QA21
	Water Supply22
	Microbiology32
	Soil
	Underground Storage Tank (UST)46
	Air & Emissions 52
	Radiochemistry58
	Low-Level CRMs64
	Custom Standards70
	Calibration Standards74
	Reagents80

Process Water

88
91
93
94
96
97
98
99
100
101
101
102
102
103


Cat #	B. J. J.		
	Product	Product Type	
597	1,4-Dioxane (WP)	PT	14
402	1,4-Dioxane (WP)	CRM	14
402QR	1,4-Dioxane (WP)	QR	14
272	1,4-Dioxane (WS)	PT	27
689	1,4-Dioxane (WS)	CRM	27
689QR	1,4-Dioxane (WS)	QR	27
461	1,4-Dioxane Soil	PT	39
538	1,4-Dioxane Soil	CRM	39
538QR	1,4-Dioxane Soil	QR	39
598	PFAS (Non-Potable Water (WP)	PT	15
403	PFAS (Non-Potable Water (WP)	CRM	15
403QR	PFAS (Non-Potable Water (WP)	QR	15
960	PFAS Drinking Water	PT	28
735	PFAS Drinking Water	CRM	28
735QR	PFAS Drinking Water	QR	28
462	PFAS Soil	PT	41
604	PFAS Soil	CRM	41
604QR	PFAS Soil	QR	41
929	PFAS Ground Water & Surface Wate	rPT	28
731	PFAS Ground Water & Surface Wate	rCRM	28
731QR	PFAS Ground Water & Surface Water	rQR	28

Sales Information and Indexes

Distributors, Sales Partners, and Subscription Services 105
Environmental Part Number Index106
Environmental Product Index112
Analyte Index114
Process Water Product Index118
Glossary

Ordering Your Standards

CRM
Certified Reference
Material (includes a
Certificate of Analysis)

DELIVERING CONTINUOUS SUPPORT

Environmental Resource Associates (ERA) is founded in Chicago, Illinois by Mark Carter and Terry Epstein as a reference materials provider for environmental laboratories

ERA receives
ISO 9001 certification

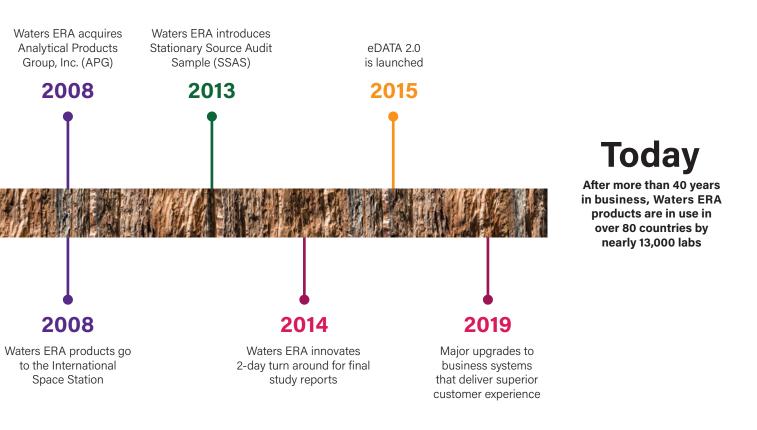
Process standards product line is launched including reference materials for total organic carbon and conductivity ERA is acquired by Waters™ Corp, the worldwide leader in liquid chromatography, mass spectrometry and thermal analysis

1977

1993

2000

2006


1982

Analytical Products Group, Inc. (APG) is founded in Marietta, Ohio as a proficiency testing provider 1999

ERA achieves PT provider accreditation by NIST/NVLAP for EPA approved studies 2006

ERA opens international office in Manchester, UK offering reference materials to laboratories throughout Europe

2020 Proficiency Testing Scheme Schedule

www.eraqc.com

Water Pollution (including UST in Water)			
	Scheme #	Opens	Closes
Q	WP 300	Jan 13	Feb 27
	WP 301	Feb 10	Mar 26
	WP 302	Mar 9	Apr 23
Q	WP 303	Apr 13	May 28
	WP 304	May 11	Jun 25
	WP 305	Jun 8	Jul 23
Q	WP 306	Jul 13	Aug 27
	WP 307	Aug 10	Sep 24
	WP 308	Sep 8	Oct 23
Q	WP 309	Oct 9	Nov 23
	WP 310	Nov 13	Dec 28
	WP 311	Dec 11	Jan 25, 2021

MRAD				
Scheme#	Opens	Closes		
MRAD 32	Mar 16	May 15		
MRAD 33	Sep 14	Nov 13		

2 schemes per year - open for 60 days

Soil (including UST in Soil)			
	Scheme #	Opens	Closes
Q	SOIL 109	Jan 20	Mar 5
Q	SOIL 110	Apr 20	Jun 4
Q	SOIL 111	Jul 20	Sep 3
Q	SOIL 112	Oct 16	Nov 30

Water Supply			
	Scheme #	Opens	Closes
Q	WS 282	Jan 6	Feb 20
	WS 283	Feb 3	Mar 19
	WS 284	Mar 2	Apr 16
Q	WS 285	Apr 6	May 21
	WS 286	May 4	Jun 18
	WS 287	Jun 1	Jul 16
Q	WS 288	Jul 6	Aug 20
	WS 289	Aug 3	Sep 17
	WS 290	Sep 1	Oct 16
Q	WS 291	Oct 2	Nov 16
	WS 292	Nov 2	Dec 17
	WS 293	Dec 4	Jan 18, 2021

Air & Emissions			
	Scheme #	Opens	Closes
Q	AE 51	Jan 27	Mar 12
Q	AE 52	Apr 27	Jun 11
Q	AE 53	Jul 27	Sep 10
Q	AE 54	Oct 23	Dec 7

Radiochemistry			
	Scheme #	Opens	Closes
Q	RAD 120	Jan 6	Feb 20
Q	RAD 121	Apr 6	May 21
Q	RAD 122	Jul 6	Aug 20
Q	RAD 123	Oct 2	Nov 16

QuiK Response PT

Need PT results fast? QuiK Response™ PTs are available on demand, 52 weeks a year. Plus, when you report in eDATA, you receive your final QuiK Response PT results instantly. Contact your Customer Service Representative or an authorized Waters ERA sales partner to place your QuiK Response order.

Schedule subject to change - see Waters ERA's website at www.eraqc.com.

2021 Proficiency Testing Scheme Schedule

www.eraqc.com

Water Pollution (including UST in Water)			
	Scheme #	Opens	Closes
Q	WP 312	Jan 18	Mar 4
	WP 313	Feb 15	Apr 1
	WP 314	Mar 15	Apr 29
Q	WP 315	Apr 12	May 27
	WP 316	May 17	Jul 1
	WP 317	Jun 14	Jul 29
Q	WP 318	Jul 19	Sep 2
	WP 319	Aug 16	Sep 30
	WP 320	Sep 13	Oct 28
Q	WP 321	Oct 15	Nov 29
	WP 322	Nov 12	Dec 27
	WP 323	Dec 13	Jan 27, 2022

MRAD				
Scheme#	Opens	Closes		
MRAD 34	Mar 22	May 21		
MRAD 35	Sep 20	Nov 19		

2 schemes per year - open for 60 days

Soil (including UST in Soil)				
	Scheme #	Opens	Closes	
Q	SOIL 113	Jan 25	Mar 11	
Q	SOIL 114	Apr 19	Jun 3	
Q	SOIL 115	Jul 26	Sep 9	
Q	SOIL 116	Oct 22	Dec 6	

Water Supply			
	Scheme #	Opens	Closes
Q	WS 294	Jan 11	Feb 25
	WS 295	Feb 8	Mar 25
	WS 296	Mar 8	Apr 22
Q	WS 297	Apr 5	May 20
	WS 298	May 10	Jun 24
	WS 299	Jun 7	Jul 22
Q	WS 300	Jul 12	Aug 26
	WS 301	Aug 9	Sep 23
	WS 302	Sep 7	Oct 22
Q	WS 303	Oct 8	Nov 22
	WS 304	Nov 5	Dec 20
	WS 305	Dec 6	Jan 20, 2022

Air & Emissions				
	Scheme #	Opens	Closes	
Q	AE 55	Jan 29	Mar 15	
Q	AE 56	Apr 26	Jun 10	
Q	AE 57	Jul 30	Sep 13	
Q	AE 58	Oct 29	Dec 13	

Radiochemistry			
	Scheme #	Opens	Closes
Q	RAD 124	Jan 11	Feb 25
Q	RAD 125	Apr 5	May 20
Q	RAD 126	Jul 12	Aug 26
Q	RAD 127	Oct 8	Nov 22

Schedule subject to change – see Waters ERA's website at www.eraqc.com.

WATER POLLUTION

Matrices with high concentrations of analytes for testing water pollution or waste water. Standards may be used to satisfy PT requirements worldwide.

Water Pollution (including UST in Water) PT Schedule

2020 2021

The state of the s	The second second	CONTRACTOR OF THE PARTY OF THE	
Mind was	Scheme#	Opens	Closes
Q	WP 300	Jan 13	Feb 27
	WP 301	Feb 10	Mar 26
	WP 302	Mar 9	Apr 23
Q	WP 303	Apr 13	May 28
	WP 304	May 11	Jun 25
	WP 305	Jun 8	Jul 23
Q	WP 306	Jul 13	Aug 27
	WP 307	Aug 10	Sep 24
	WP 308	Sep 8	Oct 23
Q	WP 309	Oct 9	Nov 23
	WP 310	Nov 13	Dec 28
	WP 311	Dec 11	Jan 25, 2021

	Scheme #	Opens	Closes
Q	WP 312	Jan 18	Mar 4
	WP 313	Feb 15	Apr 1
	WP 314	Mar 15	Apr 29
Q	WP 315	Apr 12	May 27
	WP 316	May 17	Jul 1
	WP 317	Jun 14	Jul 29
Q	WP 318	Jul 19	Sep 2
	WP 319	Aug 16	Sep 30
	WP 320	Sep 13	Oct 28
Q	WP 321	Oct 15	Nov 29
	WP 322	Nov 12	Dec 27
	WP 323	Dec 13	Jan 27, 2022

Schedule subject to change – see Waters ERA's website at www.eraqc.com

Contents

Description	CRM	PT	QR	Page
1 Liter Boston Round Oil & Grease	818	582 M	518QR	11
1 Liter Oil & Grease	518	582 M	518QR	11
1,4-Dioxane	402	597 B	402QR	14
Acidity	915	885 Q	915QR	13
Acids	712	834 M	712QR	16
Base/Neutrals	711	833 M	711QR	16
Boron	919	886 Q	919QR	14
Bromide	769	887 Q	769QR	14
BTEX & MTBE	760	643 Q	760QR	14
Carbamate Pesticides	908	899 Q	908QR	17
Chlordane	716	837 M	716QR	17
Chlorinated Acid Herbicides	718	829 M	718QR	15
Color	070	882 Q	070QR	13
Complex Nutrients	525	579 M	525QR	10
Cyanide	502	588 M	502QR	13
Demand	516	578 M	516QR	12
Diesel Range Organics (DRO) in Water	764	641 Q	764QR	16
Dissolved Oxygen	213	212 Q	213QR	13
EDB/DBCP/TCP	692	562 Q	692QR	16
Gasoline Range Organics (GRO) in Water	762	640 Q	762QR	15
Glycols in Water	401	271 Q	401QR	16
Hardness	507	580 M	507QR	10
HEM/SGT-HEM	519	489 Q	519QR	11
Hexavalent Chromium	984	898 M	984QR	12
Lithium	4992	4990 🔹	4992QR	12
Low-Level Mercury	931	896 Q	931QR	12
Low-Level Nitroaromatics & Nitramines	677	932 Q	677QR	16
Low-Level PAHs	715	836 Q	715QR	16
Low-Level Total Residual Chlorine (TRC)	917	881 M	917QR	14
Mercury	514	574 M	514QR	12
Minerals	506	581 M	506QR	10
Nitrite	770	888 M	770QR	10
Nitrogen Pesticides	674	487 Q	674QR	17

Description	CRM	PT	QR	Page
Oil & Grease	504			11
Oil & Grease Concentrate	4122	4120 M	4122QR	11
Organochlorine Pesticides	713	831 M	713QR	17
Organophosphorus Pesticides (OPP)	665	934 Q	665QR	17
PAHs-GC/GCMS	4882	4880 Q	4882QR	16
PCBs in Oil	729S	835S M	729SQR	15
PCBs in Water	734S	832S M	734SQR	15
PCBs in Water Standards		see page 15	for options	
Perchlorate	1501	1500 Q	1501QR	13
PFAS Non-Potable Water	403	598 B	403QR	15
рН	977	577 M	977QR	14
QC Plus		see page 19	for options	
Ready-to-Use CRMs		see page 18	for options	
Settleable Solids	911	883 M	911QR	10
Silica	775	890 Q	775QR	13
Simple Nutrients	505	584 M	505QR	10
Solids	499	241 M	499QR	10
Solids Concentrate	4032	4030 M	4032QR	10
Surfactants-MBAS	776	892 Q	776QR	13
Sulfide	071	891 M	071QR	13
Sulfite	534	244 B	534QR	13
Tin & Titanium	517	573 M	517QR	12
Total Organic Halides (TOX)	670	895 Q	670QR	13
Total Petroleum Hydrocarbons (TPH) in Water #1	600	642 Q	602QR	11
Total Petroleum Hydrocarbons (TPH) in Water #2	601	642 Q	602QR	11
Total Phenolics (4-AAP)	515	589 M	515QR	13
Total Residual Chlorine (TRC)	501	587 M	501QR	14
Toxaphene	717	838 M	717QR	17
Trace Metals	500	586 M	500QR	12
Turbidity	777	893 M	777QR	13
Uranium	4402	4400 Q	4402QR	12
Volatile Aromatics	4452	4450 Q	4452QR	14
Volatile Solids	913	884 M	913QR	10
Volatiles	710	830 M	710QR	14

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

All Waters ERA WP PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. WP Lithium PTs open in February and August. Quarterly months are January, April, July, and October. Biannual months are January and July.

Minerals/Solids

Minerals

CRM PT QR Cat. #506 Cat. #581 M

One 500 mL whole-volume bottle is ready to analyze.

Total alkalinity as CaCO ₃	25-400 mg/L
Chloride	35-275 mg/L
Fluoride	0.4-4 mg/L
Potassium	4–40 mg/L
Sodium	10–100 mg/L
Specific conductance at 25 °C	200-1200 µmhos/cm
Sulfate	5-125 mg/L
Total dissolved solids at 180 °C	140-800 mg/L
Total solids at 105 °C	140-800 mg/L

Hardness

 CRM
 PT
 QR

 Cat. #507
 Cat. #580
 M
 Cat. #507QR

One 500 mL whole-volume bottle is ready to analyze.

Calcium	10-100 mg/L
Calcium hardness as CaCO ₃	25-250 mg/L
Total hardness as CaCO ₃	40-415 mg/L
Magnesium	4-40 mg/L
Total suspended solids (TSS)	20-100 mg/L

Settleable Solids

 CRM
 PT
 QR

 Cat. #911
 Cat. #883
 M
 Cat. #911QR

One 60 mL poly bottle with a solid yields 1 liter after dilution. Use with EPA Method 160.5, Standard Methods 2540F, or other applicable method.

Settleable solids......5-50 mL/L

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

PT: A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

QR: Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

Volatile Solids

 CRM
 PT
 M
 QR

 Cat. #913
 Cat. #884
 M
 Cat. #913QR

One 12 mL screw-cap vial with a solid yields 1 liter after dilution. Use with EPA Method 160.4, Standard Methods 2540E, or other applicable method.

Total volatile solids......100-500 mg/L

Solids Concentrate

CRM PT QR Cat. #4032 Cat. #4032QR

One 24 mL screw-cap vial with a powder yields 1 liter of solution.

Total solids at 105 °C	.140-800 mg/L
Total dissolved solids at 180 °C	.140-800 mg/L
Total suspended solids (TSS)	20-100 mg/L

Solids

 CRM
 PT
 QR

 Cat. #499
 Cat. #241
 M
 Cat. #499QR

One 500 mL whole-volume bottle is ready to analyze.

Total solids at 105 °C	.140-800 mg/L
Total dissolved solids at 180 °C	.140-800 mg/L
Total suspended solids (TSS)	20-100 mg/L

Nutrients

Simple Nutrients

CRM PT QR
Cat. #505 Cat. #584 M Cat. #505QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Ammonia as N	1-20 mg/L
Nitrate as N	2-25 mg/L
Nitrate plus nitrite as N	2.5-25 mg/L
ortho-Phosphate as P0	.5-5.5 mg/L

Complex Nutrients

CRM PT QR
Cat. #525 Cat. #579 M Cat. #525QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Total Kjeldani nitrogen as N3-3	55 mg/L
Total phosphorus as P	0 mg/L

Nitrite

 CRM
 PT
 QR

 Cat. #770
 Cat. #888
 M
 Cat. #770QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Oil & Grease/Total Petroleum Hydrocarbons

When ordering Oil & Grease or Total Petroleum Hydrocarbons (TPH) PTs, please specify if you need a sample compatible with SPE.

Oil & Grease

CRM Cat. #504

Cat. #50

Oil & Grease Concentrate

CRM	PT	M	QR
Cat. #4122	Cat. #4120	IVI	Cat. #4122QR

One 24 mL screw-cap vial yields up to 2 liters after dilution. Use with EPA Method 1664, or other applicable method. Gravimetric analysis only.

Hexane Extractable Materials (O&G).....20-200 mg/L

1 Liter Oil & Grease

CRM	PT	M	QR
Cat. #518	Cat. #582		Cat. #518QR

One liter whole-volume glass bottle with a 33–430 thread is ready to analyze. For gravimetric and IR analyses.

Hexane Extractable Materials (0&G).....20-200 mg/L

1 Liter Boston Round Oil & Grease

CRM PT Cat. #818 Cat. #5	QR Cat. #518QR
--------------------------	-------------------

One liter whole-volume glass bottle with a 33–400 thread is ready to analyze. For gravimetric and IR analyses.

Hexane Extractable Materials (O&G)......20-200 mg/L

HEM/SGT-HEM

CRM Cat. #519

P1 Cat. #489 Q

QR Cat. #519QR

One 5 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Method 1664, or other applicable method to measure hexane extractable material (HEM) and silica gel treated-HEM. Contains both hexadecane and stearic acid.

Note: If a NELAC compliant PT is required, use Cat. #582 or Cat. #4120.

Hexane extractable material5-100 mg/L	L
Silica gel treated-HEM5-100 mg/L	L

Total Petroleum Hydrocarbons (TPH) in Water #1

CRM Cat. #600	PT	Q	QR
Cat. #600	Cat. #642		Cat. #602QR

One liter whole-volume bottle is ready to analyze for TPH without interfering fatty acids. Use with EPA Methods 1664, 5520, or other applicable method.

Total petroleum hydrocarbons......20-200 mg/L

Total Petroleum Hydrocarbons (TPH) in Water #2

CRM PT Cat. #601 Cat. #642	QR Cat. #602QR
----------------------------	-------------------

One liter whole-volume bottle is ready to analyze for TPH in the presence of interfering fatty acids. Use with EPA Methods 1664, 5520, or other applicable method.

Total petroleum hydrocarbons......20-200 mg/L

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WP PTs open monthly (M) or quarterly (Q) unless otherwise noted

Quarterly months are January, April, July, and October.

Melissa McNamara
Director of Sales and Marketing
Years with Waters ERA: 28

Demand

Demand

 CRM
 PT
 QR

 Cat. #516
 Cat. #578
 M
 Cat. #516QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

5-day BOD	18-230 mg/L
Carbonaceous BOD	18-230 mg/L
COD	.30-250 mg/L
TOC	6-100 mg/L

Metals (continued)

Hexavalent Chromium

 CRM
 PT
 QR

 Cat. #984
 Cat. #898
 M
 Cat. #984QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with IC or colorimetric methods.

Hexavalent chromium.....90-900 µg/L

Metals

Trace Metals

CRM PT QR Cat. #500 Cat. #586

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with AA, ICP-OES or ICP-MS and selected colorimetric methods.

Aluminum	200-4000 μg/L
Antimony	90-900 μg/L
Arsenic	90-900 μg/L
Barium	100-2500 µg/L
Beryllium	50-500 μg/L
Boron	800-2000 µg/L
Cadmium	100-1000 µg/L
Chromium	100-1000 µg/L
Cobalt	100-1000 µg/L
Copper	100-1000 µg/L
Iron	200-4000 µg/L
Lead	100-1500 µg/L
Manganese	200-2000 µg/L
Molybdenum	60-600 μg/L
Nickel	200-2000 µg/L
Selenium	100-1000 µg/L
Silver	100-1000 µg/L
Strontium	50-500 μg/L
Thallium	80-800 μg/L
Vanadium	50-2000 µg/L
Aluminum	300-2000 µg/L

Tin and Titanium

CRM PT QR Cat. #517 Cat. #573

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with AA, ICP-OES or ICP-MS methods.

Mercury

 CRM
 PT
 QR

 Cat. #514
 Cat. #574
 M
 Cat. #514QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Analyze for total mercury.

Total mercury......3-30 µg/l

Uranium

CRM PT QR Cat. #4402 Cat. #4402QR

One 15 mL screw-cap vial yields up to 1 liter after dilution.

Uranium......25-200 μg/L

Low-Level Mercury

CRM PT QR Cat. #931 Cat. #896 QR Cat. #931QR

One 5 mL flame-sealed ampule yields up to 4 liters after dilution. Use with EPA1631, or other sensitive mercury analysis methods.

Total mercury......20-100 ng/L

Waters ERA Low-Level Mercury is also available during February and March WP PT schemes.

Lithium

CRM PT QR
Cat. #4992 Cat. #4990 Cat. #4992QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Designed for the Ohio VAP program.

* Waters ERA WP Lithium PTs open in February and August.

Physical Property

CRM PT QR Cat. #070 Cat. #882 Q Cat. #070QR

One 125 mL whole-volume bottle is ready to analyze. Use with EPA Methods 110.1, 110.2, and 110.3, Standard Methods 2120B, 2120C, 2120E, or other applicable method.

Color......10-75 PC units

Turbidity			
CRM Cat. #777	PT Cat. #893	M	QR Cat. #777QR
One 15 mL serow can yiel yields up to 1 liter after dilution. Use with			

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with nephelometric methods.

Turbidity.....2-30 NTU

Miscellaneous Chemistry

Amenable cyanide			
Dissolved Oxyg	en		
CRM Cat. #213	PT Cat. #212	Q	QR Cat. #213QR
One 500 mL whole-volume bottle is ready to analyze.			
Dissolved oxygen			1-20 mg/L

Total Organic Halides (TOX)			
CRM Cat. #670	PT Cat. #895	Q	QR Cat. #670QR
One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Analyze for total organic halides with adsorption pyrolysis titrimetric methods.			

Total Phenolics	(4-AAP)		
CRM Cat. #515	PT Cat. #589	M	QR Cat. #515QR

.....300–1500 μg/L

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Analyze for total phenolic compounds by 4-AAP methods.

Perchlorate

CRM PT QR Cat. #1501 Cat. #1501QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with EPA methods 314.0, 314.2, 331.0, 332.0, or other applicable methods. LCMS and IC compatible.

Perchlorate.....10-200 µg/L

Silica

 CRM
 PT
 QR

 Cat. #775
 Cat. #890
 Q

One 60 mL poly bottle yields up to 1 liter after dilution. Analyze for silica as ${\rm SiO}_2$ with colorimetric or ICP methods.

Sulfide

 CRM
 PT
 QR

 Cat. #071
 Cat. #891
 M
 Cat. #071QR

One 10 mL flame-sealed ampule yields up to 1 liter after dilution. Preserved sample is guaranteed stable. Analyze for sulfide by titrimetric or colorimetric methods or ISE.

Sulfide......2-10 mg/L

Sulfite

CRM PT QR Cat. #534 B QR Cat. #534QR

One 10 mL concentrate yields up to 2 liters after dilution.

0.16

Sulfite......10-250 mg/L

B Waters ERA WP Sulfite PTs open in January and July.

Surfactants-MBAS

 CRM
 PT
 QR

 Cat. #776
 Cat. #892
 Q

One 15 mL screw-cap vial yields up to 2 liters after dilution. Analyze for surfactants-MBAS with EPA Method 425.1, or other applicable method.

Surfactants-MBAS0.2-1 mg/L

Acidity

 CRM
 PT
 QR

 Cat. #915
 Cat. #885
 Q

One 250 mL whole-volume bottle is ready to analyze. Designed for use with titrimetric methods to a pH endpoint of 8.3 S.U.

Acidity as CaCO₃......650-1800 mg/L

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WP PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. WP Lithium PTs open in February and August. Quarterly months are January, April, July, and October. Biannual months are January and July.

Miscellaneous Chemistry (continued) Volatiles

pН

CRM Cat. #977 Cat. #577

QR Cat. #977QR

One 250 mL whole-volume bottle is ready to analyze.

.....5-10 units

Boron

CRM Cat. #919 Cat. #886

Q

Cat. #919QR

One unpreserved 60 mL poly bottle yields in excess of 2 liters after dilution. Designed for

Boron

Bromide

CRM Cat. #769 Cat. #887

Q

QR Cat. #769QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ion chromatography or colorimetric methods.

Total Residual Chlorine (TRC)

CRM Cat. #501 Cat. #587

QR Cat. #501QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with titrimetric or colorimetric methods

Total residual chlorine.....

Low-Level Total Residual Chlorine (TRC)

CRM Cat. #917 Cat. #881

OR Cat. #917QR

Designed for testing at low µg/L levels. One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with sensitive titrimetric or colorimetric methods.

Total residual chlorine.....

Volatiles

CRM Cat. #710

PT Cat. #830

OR Cat. #710QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 601, 602, 8021, 624, 8260, or other applicable method. Contains a subset of the analytes listed below at 5-300 µg/L.

Acetone Acetonitrile Acrolein

Acrylonitrile Benzene

Bromobenzene Bromochloromethane Bromodichloromethane

Bromoform Bromomethane 2-Butanone (MEK)

n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide

Chlorobenzene Chlorodibromomethane Chloroethane

Carbon tetrachloride

2-Chloroethyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene

4-Chlorotoluene

(DBCP)

1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane cis-1.2-Dichloroethene 1,1-Dichloroethene trans-1.2-Dichloroethene 1,3-Dichloropropane 1,2-Dichloropropane 2,2-Dichloropropane

cis-1,3-Dichloropropene 1,1-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene Hexachloroethane 2-Hexanone Isopropylbenzene

p-Isopropyltoluene

1,2-Dibromo-3-chloropropane Methyl tert-butyl ether (MTBE) 4-Methyl-2-pentanone (MIBK) Methylene chloride Naphthalene Nitrobenzene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene

1,2,3-Trichlorobenzene 1.2.4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride m&p Xylene o-Xylene Xylenes, total

1,4-Dioxane

CRM

Cat. #402

PT Cat. #597

OR Cat. #402QR

NEW

PRODUC

One 2 mL flame-sealed ampule yields up to 1 liter after dilution. Use with modified versions of EPA methods 8260, 8270, 1624, or other applicable methods.

1,4-Dioxane....

Volatile Aromatics

CRM Cat. #4452

Cat. #4450

Q Cat. #4452QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 602, 8021, or other applicable method. Each standard contains all listed analytes at 10-300 μ g/L after dilution.

Benzene Chlorobenzene 1.2-Dichlorobenzene 1.3-Dichlorobenzene

1.4-Dichlorobenzene

Ethylbenzene Naphthalene Toluene 1,2,4-Trichlorobenzene

1.2.4-Trimethylbenzene

PT

1,3,5-Trimethylbenzene m&p Xylene o-Xylene Xylenes, total

BTEX & MTBE in Water

CRM Cat. #760 Cat. #643

QR Cat. #760QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 602, 8021, or other applicable method. Includes all BTEX compounds and MTBE at 10-300 µg/L after dilution.

Volatiles (continued)

Gasoline Range Organics (GRO) in Water

CRM PT QR Cat. #762 Cat. #640 Q Cat. #762QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with both purge and trap and modified EPA 8015 GC/FID methods or other applicable methods to test for GRO at $400-4000~\mu g/L$. Also use to test for BTEX in gasoline.

Note: This standard is not compliant with the NELAC concentration ranges for the BTEX analytes. If you require a NELAC-compliant sample for these analytes, use WP Volatiles catalog #830 or BTEX in Water catalog #643.

PCBs

PCBs in Water

CRM	PT	M	QR
Cat. #734S	Cat. #832S		Cat. #734SQR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 608, 8082, or other applicable method. Contains a different aroclor randomly selected from the list below at 2–10 μ g/L.

Aroclor 1016	Aroclor 1242	Aroclor 1254
Aroclor 1221	Aroclor 1248	Aroclor 1260
Aroclor 1232		

PCBs in Water Standards

PCBs in water standards are sold individually in 2 mL flame-sealed ampules that yield 1 liter after dilution. Use with EPA Methods 608, 8082, or other applicable methods. Each standard contains an Aroclor at 1–15 μ g/L after dilution.

CRM Cat. #	Aroclor	Range
860	1016	1-15 μg/L
861	1221	1-15 μg/L
862	1232	1-15 μg/L
863	1242	1-15 μg/L
864	1248	1-15 µg/L
865	1254	1-15 μg/L
866	1260	1-15 μg/L

PCBs in Oil

CRM	PT	M	QR
Cat. #729S	Cat. #835S	144	Cat. #729SQR

One 10 mL flame-sealed ampule is ready to analyze. Use with EPA Method 8082, or other applicable method. Contains a different aroclor randomly selected from the list below at 10–50 mg/kg.

Aroclor 1016	Aroclor 1242	Aroclor 1254
Aroclor 1221	Aroclor 1248	Aroclor 1260
Araclar 1232		

CRM - Certified Reference Material PT - Proficiency Testing QR - QuiK Response

Per-and Polyfluoroalkyl Substances (PFAS)

PFAS - Non-Potable Water			NEW PRODUCT
CRM	PT	В	QR
Cat. #403	Cat. #598		Cat. #403QR

One 2 mL flame sealed ampule yields in excess of 1.5 liters after dilution. Design is suitable for methods analyzing non-potable water. Use with LC-MS/MS techniques. The diluted standard will contain a minimum of 17 analytes in each lot selected from the list below.

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)100-500 ng/L
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)100-500 ng/L
4,8-dioxa-3H-perfluorononanoic acid (DONA)100-500 ng/L
N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)100-500 ng/L
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)100-500 ng/L
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)100-500 ng/L
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)100-500 ng/L
Hexafluoropropylene oxide dimer acid (HFPO-DA)100-500 ng/L
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)100-500 ng/L
Perfluorobutanesulfonic acid (PFBS)100-500 ng/L
Perfluorobutanoic acid (PFBA)100-500 ng/L
Perfluorodecane sulfonic acid (PFDS)100-500 ng/L
Perfluorodecanoic acid (PFDA)100-500 ng/L
Perfluorododecanoic acid (PFDoA)100-500 ng/L
Perfluoroheptane sulfonic acid (PFHpS)100-500 ng/L
Perfluoroheptanoic acid (PFHpA)100-500 ng/L
Perfluorohexanesulfonic acid (PFHxS)100-500 ng/L
Perfluorohexanoic acid (PFHxA)100-500 ng/L
Perfluorononane sulfonic acid (PFNS)100-500 ng/L
Perfluorononanoic acid (PFNA)100-500 ng/L
Perfluorooctane sulfonamide (PFOSAm)100-500 ng/L
Perfluorooctanesulfonic acid (PFOS)100-500 ng/L
Perfluorooctanoic acid (PFOA)100-500 ng/L
Perfluoropentanoic acid (PFPeA)100-500 ng/L
Perfluoropentane sulfonic acid (PFPeS)100-500 ng/L
Perfluorotetradecanoic acid (PFTDA)100-500 ng/L
Perfluorotridecanoic acid (PFTrDA)100-500 ng/L
Perfluoroundecanoic acid (PFUnDA)100-500 ng/L

Herbicides

Chlorinated Acid Herbicides

CRM	PT	M	QR
Cat. #718	Cat. #829		Cat. #718QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 615, 8151, or other applicable methods. Contains a subset of the analytes listed below at 2–10 μ g/L (except MCPA and MCPP at 10–100 μ g/L).

Note: 4-nitrophenol and pentachlorophenol are not within the EPA/NELAC range. Use the Acids standard (page 16) for these compounds in the EPA/NELAC range.

Acifluorfen	Dalapon	MCPP
Bentazon	Dicamba	4-Nitrophenol
Chloramben	3,5-Dichlorobenzoic acid	Pentachlorophenol
2,4-D	Dichlorprop	Picloram
2,4-DB	Dinoseb	2,4,5-T
Dacthal diacid (DCPA)	MCPA	2,4,5-TP (Silvex)

All Waters ERA WP PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. WP Lithium PTs open in February and August. Quarterly months are January, April, July, and October. Biannual months are January and July.

Semivolatiles

Base/Neutrals

CRM Cat. #711

PT Cat. #833

OR Cat. #711QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 625, 8270, or other applicable method. Contains a subset of the analytes listed below at 10-225 µg/L (except Benzidine at 200-1000 µg/L).

Acenaphthene Acenaphthylene 2-Amino-1-methylbenzene (o-Toluidine) Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaniline bis(2-Chloroethoxy)methane

2-Chloronaphthalene 4-Chlorophenyl phenyl ether Chrysene Dibenz(a,h)anthracene

Dibenzofuran 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 3,3'-Dichlorobenzidine Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 2.4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene

Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene N-Nitrosodiethylamine N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine 2,2'-Oxybis(1-Chloropropane) Pentachlorobenzene Phenanthrene Pvrene Pyridine

1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene

Glycols in Water

CRM Cat. #401

PT Cat. #271

OR Cat. #401QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 8015B, 8430, 1671, or other applicable method. Each lot contains all analytes in the concentration range 75-200 mg/L.

Diethylene glycol Ethylene glycol

Propylene alycol Tetraethylene glycol Triethylene glycol

Low-Level Nitroaromatics & Nitramines

CRM Cat. #677

Cat. #932

Q

QR Cat. #677QR

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA Methods 8330, 8091, or other applicable method for explosive and explosive residue analytes. Contains at least 80% of the analytes, randomly selected from the list below at 1-20 ug/L.

4-Amino-2,6-dinitrotoluene 2-Amino-4.6-dinitrotoluene

HMX Nitrobenzene RDX Tetrvl

2.4-Dinitrotoluene 2.6-Dinitrotoluene

2-Nitrotoluene 3-Nitrotoluene

1,3,5-Trinitrobenzene 2,4,6-Trinitrotoluene

4-Nitrotoluene

Acids

CRM Cat. #712

bis(2-Chloroethyl)ether

1-Chloronaphthalene

Cat. #834

2,4-Dinitrophenol

QR Cat. #712QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 604, 625, 8041, 8270, or other applicable method. Contains a subset of the analytes listed below at 30-200 $\mu g/L$.

Benzoic acid 4-Chloro-3-methylphenol 2-Chlorophenol

2-Methyl-4,6-dinitrophenol 2-Methylphenol 2.4-Dichlorophenol 3 & 4-Methlyphenol 2,6-Dichlorophenol 2-Nitrophenol 2.4-Dimethylphenol 4-Nitrophenol

Pentachlorophenol Phenol

2,3,4,6-Tetrachlorophenol 2.4.5-Trichlorophenol 2,4,6-Trichlorophenol

Diesel Range Organics (DRO) in Water

CRM Cat. #764

PT Cat. #641

OR Cat. #764QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with modified EPA 8015 GC/FID methods, or other applicable method. Includes #2 Diesel at 800-6000 µg/L.

EDB/DBCP/TCP

CRM Cat. #692 Cat. #562

OR Cat. #692QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Method 8011, or other applicable method. Each lot contains all analytes at

1,2-Dibromo-3-chloropropane (DBCP)

1.2-Dibromoethane (FDB)

1,2,3-Trichloropropane (TCP)

Low-Level PAHs

CRM Cat. #715

Cat. #836

Q

QR Cat. #715QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA HPLC Methods 610, 8310, or other applicable method, and GC/MS Method 8270 SIM. Contains a subset of the analytes listed below at $0.5-20~\mu g/L$.

Acenaphthene Acenaphthylene Anthracene

Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene

Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene Benzo(a)pyrene Naphthalene Chrysene Dibenz(a,h)anthracene Phenanthrene Fluoranthene Pyrene

PAHs - GC/GCMS

CRM Cat. #4882

PT Cat. #4880 0

QR Cat. #4882QR

One 2mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 625, 8100, 8270, or other applicable method. Each standard contains a subset of the analytes listed below at 10-200 μ g/L.

Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene Benzo(g,h,i)perylene

Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene

Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pvrene

Pesticides

Organochlorine Pesticides

CRM OR M Cat. #713 Cat. #831 Cat. #713QR

Endrin

Endrin aldehyde

Heptachlor epoxide (beta)

Endrin ketone

Methoxychlor

Heptachlor

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 608, 8081, or other applicable method. Contains a subset of the analytes listed below at 1-20 µg/L.

Aldrin 4.4'-DDD alpha-BHC 4.4'-DDE beta-BHC 4,4'-DDT delta-BHC Dieldrin gamma-BHC (Lindane) Endosulfan I

alpha-Chlordane gamma-Chlordane

Endosulfan II Endosulfan sulfate

Nitrogen Pesticides

CRM Cat. #674

Cat. #487

OR Cat. #674QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 619, 633, 8141, 8270, or other applicable method. Contains a subset of the analytes listed below at 2-20 µg/L.

Alachlor Deethyl atrazine Prometon Ametryn Deisopropyl atrazine Prometryn Anilazine Diaminoatrazine Pronamide Atraton EPTC (eptam) Propachlor Atrazine Hexazinone Propazine Bromacil Metolachlor Simazine Butachlor Metribuzin Terbacil Trifluralin Butvlate Napropamide Cyanazine

Chlordane

CRM Cat. #837 Cat. #716QR Cat. #716

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA Methods 608, 8081, or other applicable method. Contains technical chlordane at

Toxaphene

CRM QR Cat. #717 Cat. #838 Cat. #717QR

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA Methods 608, 8081, or other applicable method. Contains toxaphene at 20–100 μg/L.

Organophosphorus Pesticides (OPP)

CRM Cat. #665

Cat. #934

QR Cat. #665QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 614, 622, 8141, or other applicable method. Contains a subset of the analytes listed below at 2-20 µg/L.

Azinphos-methyl (guthion) Dioxathion Malathion Carbophenothion Disulfoton Methyl parathion Chlorpyrifos Ethion Phorate Demeton Ethoprop Phosmet Demeton O & S Ethyl Parathion (parathion) Ronnel Diazinon Famphur Stirophos (tetrachlorovinphos)

Dichlorvos (DDVP) Fonofos Terbufos Dimethoate

Carbamate Pesticides

CRM OR Cat. #908QR Cat. #899 Cat. #908

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA method 632, or other applicable method. Contains a subset of the analytes listed below at 5-200 μ g/L.

Aldicarb Carbaryl Methiocarb Aldicarb sulfone Carbofuran Methomyl Aldicarb sulfoxide Diuron Oxamyl Baygon 3-Hydroxycarbofuran Propham

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WP PTs open monthly (M) or quarterly (Q) unless otherwise noted. Quarterly months are January, April, July, and October.

Audrey Cornell Principal Proficiency Testing Technical Specialist

Years with Waters ERA: 21

Christian Milek

Ready-to-Use CRMs

The following whole-volume standards are ready-to-use as provided and require no dilution before analysis.*

Minerals

CRM

Cat. #506

One 500 mL whole-volume bottle is ready to analyze.

Total alkalinity as CaCO ₃	25-400 mg/L
Chloride	35-275 mg/L
Fluoride	0.4-4 mg/L
Potassium	4-40 mg/L
Sodium	10-100 mg/L
Specific conductance at 25 °C	200-1200 µmhos/cm
Sulfate	5-125 mg/L
Total dissolved solids at 180 °C	140-800 mg/L
Total solids at 105 °C	140-800 mg/L

Hardness

CRM

Cat. #507

One 500 mL whole-volume bottle is ready to analyze.

10-100 mg/L
25-250 mg/L
40-415 mg/L
4-40 mg/L
20-100 mg/L

pН

CRM

Cat. #977

One 250 mL whole-volume bottle is ready to analyze.

pH......5-10 units

Oil & Grease

CRM

Cat. #504

One 250 mL whole-volume bottle is ready to analyze. Use with EPA hexane extraction Method 1664, or other applicable method. Certified values are provided for IR and gravimetric methods. For additional Oil & Grease CRMs see page 11.

Oil and grease.....20-200 mg/bottle

Solids

CRM

Cat. #499

One 500 mL whole-volume bottle is ready to analyze.

Total solids at 105 °C	140-800 mg/L
Total dissolved solids at 180 °C	140-800 mg/L
Total suspended solids (TSS)	20-100 mg/L
pHHq	5-10 units

Trace Metals*

CRM

Cat. #740

One 500 mL whole-volume bottle is ready to analyze. Use with AA, ICP-OES, ICP-MS, and selected colorimetric methods.

Aluminum200-4000 μg/L
Antimony90-900 μg/L
Arsenic90-900 μg/L
Barium100-2500 μg/L
Beryllium50-500 μg/L
Boron800-2000 μg/L
Cadmium100-1000 μg/L
Chromium100-1000 μg/L
Cobalt100-1000 μg/L
Copper100-1000 µg/L
Iron200-4000 μg/L
Lead100-1500 μg/L
Manganese200-2000 μg/L
Molybdenum60-600 μg/L
Nickel200-2000 μg/L
Selenium100-1000 μg/L
Silver100-1000 μg/L
Strontium50-500 μg/L
Thallium80-800 μg/L
Vanadium50-2000 μg/L
Aluminum 200-4000 μg/L Antimony 90-900 μg/L Arsenic 90-900 μg/L Barium 100-2500 μg/L Beryllium 50-500 μg/L Boron 800-2000 μg/L Cadmium 100-1000 μg/L Chromium 100-1000 μg/L Cobalt 100-1000 μg/L Iron 200-4000 μg/L Lead 100-1500 μg/L Manganese 200-2000 μg/L Nickel 200-2000 μg/L Selenium 100-1000 μg/L Silver 100-1000 μg/L Strontium 50-500 μg/L Thallium 80-800 μg/L Vanadium 50-2000 μg/L Zinc 300-2000 μg/L

Demand*

CRM

Cat. #743

One 500 mL whole-volume bottle is ready to analyze.

5-day BOD	18-230 mg/L
Carbonaceous BOD	18-230 mg/L
COD	30-250 mg/L
TOC	6-100 ma/l

Simple Nutrients*

CRM

Cat. #739

One 500 mL whole-volume bottle is ready to analyze.

Ammonia as N1-20 m	ng/L
Nitrate as N2-25 m	ng/L
Nitrate plus nitrite as N2.5-25 m	ng/L
ortho-Phosphate as P	na/L

Complex Nutrients*

CRM

Cat. #741

One 500 mL whole-volume bottle is ready to analyze.

Total Kjeldahl nitrogen as N	3-35 mg/L
Total phosphorus as P	0.5-10 mg/L

^{*}These standards are guaranteed stable for a minimum of one month after receipt at your facility.

QC Plus

The QC Plus Program includes environmental analytes at concentrations that reflect realistic levels of pollutants in industrial settings. Each sample level is designed for wastewater and industrial analysis. These Certified Reference Materials (CRMs) are an asset to any quality assurance program because they enable you to test your internal systems to ensure that your equipment, methods, and analysts are producing quality data.

QC Plus - Demand

CRM

Cat. #4013

One 24 mL screw-cap vial yields up to 1 liter after dilution.

5-day BOD	100-300 mg/L
Carbonaceous BOD	87.0-256 mg/L
COD	150-500 mg/L
TOC	50.0-200 mg/L

QC Plus - Hexavalent Chromium

CRM

Cat. #4183

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Hexavalent chromium.....100-1000 µa/L

QC Plus - Minerals

CRM

Cat. #4053

Two 30 mL screw-cap vials to be diluted together to yield up to 2 liters of sample.

Alkalinity as CaCO ₃	10.0-300 mg/L
Calcium	5.00-150 mg/L
Calcium hardness as CaCO ₃	12.5-375 mg/L
Chloride	10.0-700 mg/L
Conductivity	100-4000 µmhos/cm
Magnesium	1.00-50.0 mg/L
Potassium	1.00-300 mg/L
Sodium	10.0-300 mg/L
Sulfate	10.0-300 mg/L
Total dissolved solids at 180 °C	20.0-2400 mg/L
Total hardness as CaCO ₃	15.0-600 mg/L

QC Plus - Nutrients

CRM

Cat. #4023

Two 15 mL screw-cap vials yield up to 2 liters each after dilution.

Ammonia nitrogen as N	0.250-10.0 mg/L
Nitrate nitrogen as N	0.250-10.0 mg/L
ortho-Phosphate as P	0.0500-10.0 mg/L
Total Kjeldahl nitrogen	0.250-10.0 mg/L
Total phosphorus as P	0.100-10.0 mg/L

QC Plus - Oil & Grease

CRM

Cat. #4123

One 24 mL screw-cap vial yields up to 2 liters after dilution.

QC Plus - pH

CRM

Cat. #4063

One 250 mL whole-volume bottle is ready to analyze.

...2.00-12.0 units

QC Plus - Fluoride

CRM

Cat. #4423

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Fluoride.. .5-20 mg/L

Eric Negrey IT Manager

Years with Waters: 1

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

Quarterly months are January, April, July, and October. Biannual months are January and July.

QC Plus

QC Plus - Solids

CRM Cat. #4033

One 24 mL screw-cap vial with a powder yields 1 liter after dilution.

Total dissolved solids at 180 °C	500-2000 mg/L
Total solids at 105 °C	600-2500 mg/L
Total suspended solids (TSS)	100-500 mg/L

QC Plus - Total Cyanide

CRM Cat. #4093

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Total cyanide......1.00-5.00 mg/L

QC Plus - Total Phenolics

CRM Cat. #4083

One 15 mL screw-cap vial yields up to 2 liters after dilution.

QC Plus - Total Residual Chlorine

CRM Cat. #4103

One 24 mL amber screw cap vial yields up to 2 liters of solution after dilution.

Total residual chlorine.......0.100-1.00 mg/L

Quarterly months are January, April, July, and October. Biannual months are January and July.

Claire Toon
Customer Service
Representative
Years with Waters ERA: 5

TRUST THE DMR-QA EXPERTS

Whether you are new to the U.S. EPA's Discharge Monitoring Report-Quality Assurance (DMR-QA) study, or are a seasoned participant, Waters ERA offers readily-accessible tools and a team of professionals to help you:

- Report data easily with access to eDATA tools
- Receive WP study reports two days after close date
- Access NPDES data from eDATA at the close of study
- Meet study requirements and be successful with the DMR-QA journey

WATER SUPPLY

Q WS 291 Oct 2 Nov 16 Dec 17 WS 292 Nov 2 WS 293 Dec 4 Jan 18, 2021

WS 302 Sep 7 Q WS 303 WS 304

WS 297

WS 298

WS 299

WS 300

WS 301

WS 305

Q

Q

Oct 8 Nov 22 Dec 20 Nov 5 Dec 6 Jan 20, 2022

May 20

Jun 24

Jul 22

Aug 26

Sep 23

Oct 22

Apr 5

May 10

Jun 7

Jul 12

Aug 9

Schedule subject to change - see Waters ERA's website at www.eraqc.com

WS 285

WS 286

WS 287

WS 288

WS 289

WS 290

Apr 6

May 4

Jun 1

Jul 6

Aug 3

Sep 1

May 21

Jun 18

Jul 16

Aug 20

Sep 17

Oct 16

Q

Q

Contents

Description	CRM	PT	QR	Page
1,4-Dioxane	689	272 B	689QR	27
Ammonia as N	1359	1319 B	1359QR	25
Carbamates/Carbamoxyloxime Pesticides	707	846 M	707QR	28
Chloral Hydrate	676	853 B	676QR	25
Chlordane	705	845 M	705QR	28
Chlorinated Acid Herbicides	704	851 M	704QR	30
Color	661	859 Q	661QR	26
Corrosivity	980	900 Q	980QR	26
Cyanide	983	556 M	983QR	25
Dioxin	663	857 Q	663QR	30
EDB/DBCP/TCP	706	847 M	706QR	30
Gasoline Additives	909	905 Q	909QR	27
Haloacetic Acids (HAA)	684	852 M	684QR	25
Halomethanes (THMs)	702	842 M	702QR	27
Hardness	693	555 M	693QR	24
Hexavalent Chromium	658	854 Q	658QR	24
Inorganic Disinfection #1	5272	5270 M	5272QR	25
Inorganic Disinfection #2	5262	5260 M	5262QR	25
Inorganics	698	591 M	698QR	24
Low-Level 1,2,3-TCP	682	596 B	682QR	30
Mercury	666	551 M	666QR	24
Metals	697	590 M	697QR	24

Description	CRM	PT	QR	Page
Nitrite	695	594 M	695QR	25
o-Phosphate Nutrients	667	558 M	667QR	25
Organic Carbon	669	557 M	669QR	26
PCBs as Decachlorobiphenyl	708	839 Q	708QR	30
Perchlorate	910	903 Q	910QR	26
Pesticides	709	850 M	709QR	28
PFAS Drinking Water	735	960 Q	735QR	28
PFAS Ground Water and Surface Water	731	929 Q	731QR	28
pH	779	552 M	779QR	26
Regulated Volatiles	703	840 M	703QR	27
Residual Chlorine	696	593 M	696QR	25
Semivolatiles #1	690	848 M	690QR	30
Semivolatiles #2 Herbicides	691	849 M	691QR	30
Silica	785	902 Q	785QR	26
Solids Concentrate	5152	5150 M	5152QR	24
Surfactants-MBAS	784	901 Q	784QR	26
Toxaphene	700	844 M	700QR	28
Turbidity	699	592 M	699QR	26
Unregulated Volatiles	683	841 M	683QR	27
Uranium	930	858 Q	930QR	24
UV 254 Absorbance	662	904 Q	662QR	26
Vanadium	660	856 Q	660QR	24

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

PT: A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

QR: Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October. Biannual months are January and July.

Minerals/Solids

Hardness

CRM Cat. #693

Cat. #555

QR Cat. #693QR

One 250 mL whole-volume bottle is ready to analyze.

Calcium30-90 r	ng/L
Calcium hardness as CaCO ₃	ng/L
Total hardness as CaCO ₃ 83-307 r	ng/L
Magnesium2-20 r	ng/L
Sodium12-50 r	ng/L

Inorganics

Cat. #698

Cat. #591

QR Cat. #698QR

One 500 mL whole-volume bottle is ready to analyze. The CRM is also certified for sodium at 10-400 mg/L. For a sodium PT, order Hardness, Cat. #555.

Alkalinity as CaCO ₃	25-200 mg/L
Chloride	20-160 mg/L
Fluoride	1-8 mg/L
Nitrate as N	3-10 mg/L
Nitrate plus nitrite as N	3-10 mg/L
Potassium	10-40 mg/L
Specific conductance at 25 °C	130-1300 µmhos/cm
Sulfate	25-250 mg/L
Total dissolved solids (TDS) at 180 °C	100-1000 mg/L

Solids Concentrate

CRM Cat. #5152

Cat. #5150

QR Cat. #5152QR

One 24 mL screw-cap vial with a powder yields 1 liter after dilution.

Total filterable residue (TDS) at 180 °C	100-1000 mg/L
Total solids (TS) at 105 °C	123-1100 mg/L
Total suspended solids (TSS)	23-100 mg/l

Kyle Jordan Account Manager Years with Waters ERA: 1

Trace Metals

Metals

Aluminum

CRM Cat. #697

PT Cat. #590

OR Cat. #697QR

130-1000 ug/l

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ICP-OES, ICP-MS, and AA methods.

Αιμπιτιτίτι	y/∟
Antimony6–50 μ	g/L
Arsenic5-50 μ	g/L
Barium500-3000 μ	g/L
Beryllium2–20 μ	g/L
Boron800-2000 με	g/L
Cadmium2-50 μ	g/L
Chromium10-200 μ	g/L
Copper50-2000 μ	g/L
Iron100–1800 μ	g/L
Lead5-100 µ	g/L
Manganese40–900 μ	g/L
Molybdenum15–130 μ	g/L
Nickel10-500 μ	g/L
Selenium10-100 μ	g/L
Silver20-300 μ	g/L
Thallium2–10 µg	g/L
Vanadium50–1000 μ	g/L
Antimony	g/L

Mercury

CRM Cat. #666

PT Cat. #551

M

QR Cat. #666QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with CVAA, ICP-MS, or CVAFS methods.

Total mercury..... 0.5-10 μg/L

Hexavalent Chromium

CRM Cat. #658

Cat. #854

Q

QR Cat. #658QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Hexavalent chromium.....

Uranium

CRM Cat. #930 Cat. #858

QR Cat. #930QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ICP-MS methods.

Vanadium

CRM Cat. #660

PT Cat. #856 Q

QR Cat. #660QR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Designed to meet California ELAP requirements.

Vanadium.....5-50 μg/L

Disinfection By-Products

Chloral Hydrate

CRM Cat. #676 **PT** Cat. #853

QR Cat. #676QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Method 551, or other applicable method. Includes chloral hydrate at 4–30 μ g/L.

B Waters ERA WS Chloral Hydrate PTs open in January and July.

Haloacetic Acids (HAA)

CRM Cat. #684 **PT** Cat. #852

QR Cat. #684QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Method 552, or other applicable method. Includes all the analytes below at 5–50 $\mu g/L$.

Bromochloroacetic acid
Dibromoacetic acid

Dichloroacetic acid

Monobromoacetic acid

Monochloroacetic acid
Trichloroacetic acid

Inorganic Disinfection #1

CRM Cat. #5272 **PT** Cat. #5270

QR Cat. #5272QR

One 24 mL screw-cap vial yields up to 4 liters after dilution.

Inorganic Disinfection #2

CRM Cat. #5262 **PT** Cat. #5260

QR Cat. #5262QR

One 24 mL screw-cap vial yields up to 4 liters after dilution.

 Bromate
 7-50 μg/L

 Bromide
 50-300 μg/L

Nutrients

Ammonia as N

CRM Cat. #1359

PT Cat. #1319

QR Cat. #1359QR

One 15 mL screw-cap vial yeilds up to 1 liter after dilution.

Ammonia as N

B Waters ERA WS Ammonia as N PTs open in January and July.

Nitrite

CRM Cat. #695 **PT** Cat. #594

QR Cat. #695QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

o-Phosphate Nutrients

CRM Cat. #667 **PT** Cat. #558 M

QR Cat. #667QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Miscellaneous Inorganic

Residual Chlorine

CRM Cat. #696 **PT** Cat. #593

M

QR Cat. #696QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution.

Cyanide

Cat #99

PT Cat. #556

QR Cat. #983OR

One 15 mL screw-cap vial yields up to 2 liters after dilution. Source material is free cyanide.

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October.

Miscellaneous Inorganic (continued)

Organic Carbon

CRM Cat. #669 Cat. #557 Cat. #669QR

One 15 mL screw-cap vial yields up to 1 liter after dilution.

Total organic carbon..... Dissolved organic carbon.....

Perchlorate

CRM QR Cat. #910QR Cat. #910 Cat. #903

One 15 mL screw-cap vial yields up to 2 liters after dilution.

рH

CRM Cat. #779 Cat. #552

One 250 mL whole-volume bottle is ready to analyze.

Silica

CRM **OR** Cat. #902 Cat. #785QR Cat. #785

One 60 mL poly bottle yields 1 liter after dilution.

Surfactants-MBAS

CRM QR Cat. #901 Cat. #784 Cat. #784QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Surfactants-MBAS.......0.1-1 mg/L

Physical Property

Color

QR

CRM **OR** Cat. #661 Cat. #859 Cat. #661QR

One 125 mL whole-volume bottle is ready to analyze.

.....10-75 PC units

Corrosivity

CRM QR Cat. #980 Cat. #900 Cat. #980QR

One 500 mL whole-volume bottle is ready to analyze for corrosivity, calcium carbonate saturation, and Langelier Saturation Index.

Turbidity

CRM PT **OR** Cat. #592 Cat. #699 Cat. #699QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with nephelometric methods.

UV 254 Absorbance

Cat. #904 Cat. #662QR Cat. #662

One 15 mL screw-cap vial yields up to 1 liter after dilution.

UV 254 absorbance...... 0.05-0.7 cm⁻¹

Our stabilized turbidity calibration solutions give you an affordable alternative to costly turbidity consumables and deliver accurate results to help stretch your facility's budget.

View our Turbidity Standards on page 101.

Volatile Organics

1,4-Dioxane PRODUCT **CRM** PT QR В Cat. #272 Cat. #689 Cat. #689QR

One 2 mL flame-sealed ampule yields 500 mL after dilution. Use with EPA method 522.

1.4-Dioxane...

Gasoline Additives

CRM PT QR Cat. #909 Cat. #905 Cat. #909QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Method 524.2, or other applicable method for gasoline additives/oxygenates. Contains all of the analytes below at 5-50 μ g/L.

tert-Butyl alcohol Di-isopropylether (DIPE)

tert-Amyl methyl ether (TAME) Ethyl tert-butyl ether (ETBE) Methyl tert-butyl ether (MTBE) (Freon 11)

Trichlorofluoromethane Trichlorotrifluoroethane (Freon 113)

Halomethanes (THMs)

CRM QR Cat. #702 Cat. #842 Cat. #702QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 502.2, 524.2, 551, or other applicable method. Contains all of the analytes below at 5-50 µg/L.

Bromodichloromethane Bromoform

Chlorodibromomethane

Chloroform

Regulated Volatiles

CRM PT QR Cat. #703 Cat. #840 Cat. #703QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 502.2, 524.2, or other applicable method. Contains all of the analytes below at 2-50 μg/L.

Benzene Carbon tetrachloride Chlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1.2-Dichloroethane 1,1-Dichloroethylene

cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane Ethylbenzene Methylene chloride Styrene Tetrachloroethylene

Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl chloride Xylenes, total

Unregulated Volatiles

CRM Cat. #683

Cat. #841

OR Cat. #683QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 502.2, 524.2, or other applicable method. Contains at least 60% of the analytes randomly selected from the list below at 2-50 µg/L.

Bromobenzene Bromochloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butvlbenzene Chloroethane Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromomethane

1,3-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1.3-Dichloropropane 2,2-Dichloropropane 1.1-Dichloropropene cis-1,3-Dichloropropene trans-1,3 Dichloropropene Fluorotrichloromethane Hexachlorobutadiene Isopropylbenzene

4-Isopropyltoluene Methyl tert-butyl ether (MTBE) Naphthalene n-Propylbenzene 1,1,1,2-Tetrachloroethane 1.1.2.2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1.2.4-Trimethylbenzene 1,3,5-Trimethylbenzene

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October.

Per- and Polyfluoroalkyl Substances (PFAS)

PFAS Drinking Water

NEW ANALYTES

CRM Cat. #735 **PT** Cat. #960

Q

QR Cat. #735QR

One 2 mL flame sealed ampule yields in excess of 1.5 L after dilution. Use with EPA method 537. The diluted standard will contain 6-8 analytes in each lot selected from the list below.

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUd: 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)50-500 ng/L
N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	50-500 ng/L
4,8-dioxa-3H-perfluorononanoic acid (DONA)	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	100-1000 ng/L
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	50-500 ng/L
Perfluorobutanesulfonic acid (PFBS)	100-1000 ng/L
Perfluorodecanoic acid (PFDA)	50-500 ng/L
Perfluorododecanoic acid (PEDoA)	50-500 ng/l
Perfluoroheptanoic acid (PFHpA)	50-500 ng/L
Perfluorohexanesulfonic acid (PFHxS)	50-500 ng/L
Perfluorohexanoic acid (PFHxA)	50-500 ng/L
Perfluorononanoic acid (PFNA)	50-500 ng/L
Perfluorooctanesulfonic acid (PFOS)	
Perfluorooctanoic acid (PFOA)	
Perfluorotetradecanoic acid (PFTDA)	
Perfluorotridecanoic acid (PFTrDA)	
Perfluoroundecanoic acid (PFUnDA)	

PFAS Ground Water & Surface Water

CRM Cat. #731

Cat. #929

QR Cat. #731QR

One 2 mL flame sealed ampule yields in excess of 1.5 L after dilution. Design is suitable for methods analyzing ground water or surface water. Use with LC/MS/MS techniques. The diluted standard will contain 6-12 analytes in each lot selected from the list below.

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS). 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS) 4,8-dioxa-3H-perfluorononanoic acid (DONA) N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) 1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS) 1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	100-500 ng/L 100-500 ng/L 100-500 ng/L 100-500 ng/L
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	100-500 ng/L
Hexafluoropropylene oxide dimer acid (HFPO-DA)	100-500 ng/L
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	100-500 ng/L
Perfluorobutanesulfonic acid (PFBS)Perfluorobutanoic acid (PFBA)	100-500 ng/L
Perfluorobutanoic acid (PFBA)	100-500 ng/L
Perfluorodecane sulfonic acid (PFDS)	
Perfluorodecanoic acid (PFDA)	
Perfluorododecanoic acid (PFDoA)	100-500 ng/L
Perfluoroheptane sulfonic acid (PFHpS)	
Perfluoroheptanoic acid (PFHpA)	
Perfluorohexanesulfonic acid (PFHxS)	100-500 ng/L
Perfluorohexanoic acid (PFHxA)	
Perfluorononane sulfonic acid (PFNS)	
Perfluorononanoic acid (PFNA)	
Perfluorooctane sulfonamide (PFOSAm)	
Perfluorooctanesulfonic acid (PFOS)	
Perfluorooctanoic acid (PFOA)	
Perfluoropentanoic acid (PFPeA)	
Perfluoropentane sulfonic acid (PFPeS)	
Perfluorotetradecanoic acid (PFTDA)	
Perfluorotridecanoic acid (PFTrDA)	
Perfluoroundecanoic acid (PFUnDA)	100-500 ng/L

Pesticides

Pesticides

CRM Cat. #709 **PT** Cat. #850

M

QR Cat. #709QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 505, 507, 508, 525, or other applicable method for organochlorine, nitrogen, and organophosphorus pesticides. Each standard contains at least 14 analytes randomly selected from the list below at 0.2–20 µg/L.

Alachlor	Heptachlor	Metribuzin
Aldrin	Heptachlor epoxide (beta)	Molinate (ordram)
Atrazine	Hexachlorobenzene	Prometon
Bromacil	Hexachlorocyclopentadiene	Propachlor
Butachlor	Lindane (gamma-BHC)	Simazine
Diazinon	Methoxychlor	Thiobencarb
Dieldrin	Metolachlor	Trifluralin
Endrin		

Carbamate/Carbamoxyloxime Pesticides

CRM Cat. #707

PT Cat. #846

M

QR Cat. #707QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 531.1, 531.2, 632, or other applicable method. Each standard contains at least 8 of the analytes below at 15–150 μ g/L.

Aldicarb	
Aldicarb sulfone	
Aldicarb sulfoxide	
Baygon	

Carbaryl Carbofuran 3-Hydroxycarbofuran Methiocarb Methomyl Oxamyl

Chlordane

CRM Cat. #705 **PT** Cat. #845

M

QR Cat. #705QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 505, 508, 525, or other applicable method. Each standard contains technical chlordane at 2–20 $\mu g/L$.

Toxaphene

CRM Cat. #700 **PT** Cat. #844

M

QR Cat. #700QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 505, 508, 525, or other applicable method. Each standard contains toxaphene at 2–20 μ g/L.

Brian Miller Product Line Manager

Years with Waters ERA: 17

GET AHEAD OF INCREASING PFAS DEMANDS

PFASs have long been a contaminant of concern for environmental waters, but they are now emerging in food safety concerns. Laboratories are seeking fast and sensitive solutions to rapidly detect these pollutants in surface, ground, and waste waters to help target remediation efforts and prevent food chain contamination.

Waters offers robust analytical solutions to meet advisory levels for legacy and emerging PFASs:

- LC-MS/MS to reach detection limits in the low-to-sub ng/L range
- SPE sample preparation that allows for sample enrichment to increase sensitivity
- Large volume direct injection method to speed up analysis time
- Employ dependable solutions for POPs and chemical contaminant analysis.

THE SCIENCE OF WHAT'S POSSIBLE.™

Learn more at www.waters.com/environmental

Pesticides (continued)

EDB/DBCP/TCP

CRM Cat. #706 **PT** Cat. #847 M

QR Cat. #706QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 504, 551, or other applicable method. Each lot contains all analytes below at $0.05-2\,\mu\text{g/L}$.

1,2-Dibromo-3-chloropropane (DBCP) Ethylene dibromide (EDB) 1,2,3-Trichloropropane (1,2,3-TCP)

Low-Level 1,2,3-TCP

CRM Cat. #682 **PT** Cat. #596

В

QR Cat. #682QR

One 2 mL flame-sealed ampule yields 100 mL after dilution. Use with California method SRL 524M, or other applicable method. Each standard contains 1,2,3-Trichloropropane (TCP) at 5-100 ng/L after dilution.

B Low-Level 1,2,3-TCP available in January and July.

Semivolatile Organics

Dioxin

CRM Cat. #663

PT Cat. #857 Q

QR Cat. #663QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 613, 1613, 8280, 8290, or other applicable method. Each standard contains 2,3,7,8-TCDD at 20–100 pg/L.

PCBs as Decachlorobiphenyl

CRM Cat. #708 **PT** Cat. #839

QR Cat. #708QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Quantitative Method 508A. This standard can also be used for aroclor identification and quantification using EPA Methods 505, 508, 508.1, or other applicable method. Includes an aroclor randomly selected from the list below at 0.5–5 $\mu g/L$ as decachlorobiphenyl.

Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248

Aroclor 1254 Aroclor 1260

Semivolatile Organics (continued)

Semivolatiles #1

CRM Cat. #690

PT Cat. #848

M

QR Cat. #690QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 506, 525, 550, or other applicable method for PAHs, phthalates, and adipates. Each standard contains benzo(a)pyrene, bis(2-ethylhexyl)adipate, and bis(2-ethylhexyl)phthalate plus at least 13 additional analytes, selected from the list below, at 0.2–50 $\mu g/L$.

Butyl benzyl phthalate

Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(g,h,i)perylene

Benzo(a)pyrene

Chyrsene
Dibenz(a,h)anthracene
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Di-n-octyl phthalate
bis(2-Ethylhexyl)adipate

bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene

Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

Naphthalene is not within the EPA/NELAC range. Use the Unregulated Volatiles standard (page 27 for this compound in the EPA/NELAC range.

Herbicides

Chlorinated Acid Herbicides

CRM Cat. #704 **PT** Cat. #851

M

QR Cat. #704QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 515.1, 515.2, 515.3, 515.4, 555, or other applicable method. All lots include at least 10 analytes from the list below at 1–120 μ g/L.

Acifluorfen Bentazon Chloramben 2,4-D

Dalapon Dicamba 3,5-Dichlorobenzoic acid Dichlorprop Dinoseb 4-Nitrophenol Pentachlorophenol Picloram 2,4,5-T

2,4,5-TP (silvex)

Dacthal diacid (DCPA)

2.4-DB

Semivolatiles #2 Herbicides

CRM Cat. #691

P1 Cat. #849 M

QR Cat. #691QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Methods 547, 548, 549, or other applicable method. Each standard contains all the analytes below at $8-800~\mu g/L$.

Diquat Endothall Glyphosate

Paraquat

CRM - Certified Reference Material PT - Proficiency Testing QR - QuiK Response

All Waters ERA WS PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Quarterly months are January, April, July, and October.

MAGNIFY YOUR DIOXIN DETECTION

The analysis of dioxins is particularly demanding due to encountered low-level regulatory exposure limits and complex sample matrices. Waters provides LC-MS/MS and GC-MS/MS systems for the detection and quantification of dioxins and related compounds at ultratrace levels. Combined with our analytical standards & reagents, proficiency testing (ERA), column and sample preparation products, and data management software, these solutions are designed to:

- Increase accuracy
- Enhance sensitivity
- Accelerate throughput
- Ensure compliance

Employ dependable solutions for POPs and chemical contaminant analysis.

THE SCIENCE OF WHAT'S POSSIBLE.™

Learn more at www.waters.com/environmental

MICROBIOLOGY

Matrices with low and high concentrations of analytes for testing bacteria in drinking water and waste water. Samples are delivered as lyophilized pellets in a glass vial with phosphate buffer dilution water.

Water Pollution PT Schedule

	Scheme #	Opens	Closes
Q	WP 300	Jan 13	Feb 27
188	WP 301	Feb 10	Mar 26
1500	WP 302	Mar 9	Apr 23
Q	WP 303	Apr 13	May 28
	WP 304	May 11	Jun 25
	WP 305	Jun 8	Jul 23
Q	WP 306	Jul 13	Aug 27
	WP 307	Aug 10	Sep 24
	WP 308	Sep 8	Oct 23
Q	WP 309	Oct 9	Nov 23
	WP 310	Nov 13	Dec 28
	WP 311	Dec 11	Jan 25, 2021

Q	WP 312	Jan 18	Mar 4
120 00	WP 313	Feb 15	Apr 1
	WP 314	Mar 15	Apr 29
Q	WP 315	Apr 12	May 27
	WP 316	May 17	Jul 1
	WP 317	Jun 14	Jul 29
Q	WP 318	Jul 19	Sep 2
M	WP 319	Aug 16	Sep 30
	WP 320	Sep 13	Oct 28
Q	WP 321	Oct 15	Nov 29

Opens

Nov 12

Dec 13

Closes

Dec 27

Jan 27, 2022

Scheme #

WP 322

WP 323

Schedule subject to change - see Waters ERA's website at www.eraqc.com

Contents

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

PT: A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

QR: Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

Description	CRM	PT	QR	Page
Enterococci	081	880 Q	787QR	34
Heterotrophic Plate Count (WP)		935 B		34
Heterotrophic Plate Count (WS)	084	079 M	084QR	34
Massachusetts Ground Water Enterococci	081	077 *	_	34
Potable Water Coliform Microbe	694	080 M	085QR	34
Source Water Microbe	078	595 Q	078QR	34
Source Water Microbe - 9221	078A	595A Q	078AQR	34
Wastewater Coliform Microbe	083	576 M	786QR	34
Wastewater Coliform Microbe - 9221	083A	576A M	786AQR	34

Water Supply PT Schedule 2020

	Scheme #	Opens	Closes
Q	WS 282	Jan 6	Feb 20
	WS 283	Feb 3	Mar 19
	WS 284	Mar 2	Apr 16
Q	WS 285	Apr 6	May 21
	WS 286	May 4	Jun 18
	WS 287	Jun 1	Jul 16
Q	WS 288	Jul 6	Aug 20
	WS 289	Aug 3	Sep 17
	WS 290	Sep 1	Oct 16
Q	WS 291	Oct 2	Nov 16
	WS 292	Nov 2	Dec 17
	WS 293	Dec 4	Jan 18, 2021

2021

	Scheme #	Opens	Closes
Q	WS 294	Jan 11	Feb 25
	WS 295	Feb 8	Mar 25
	WS 296	Mar 8	Apr 22
Q	WS 297	Apr 5	May 20
	WS 298	May 10	Jun 24
	WS 299	Jun 7	Jul 22
Q	WS 300	Jul 12	Aug 26
	WS 301	Aug 9	Sep 23
	WS 302	Sep 7	Oct 22
Q	WS 303	Oct 8	Nov 22
	WS 304	Nov 5	Dec 20
	WS 305	Dec 6	Jan 20, 2022

All Waters ERA Microbiology PTs open monthly (M), quarterly (Q), or biannually (B) unless otherwise noted. Waters ERA Massachusetts Ground Water Enterococci PT is available any time. Quarterly months are January, April, July, and October.

WP Microbiology

Wastewater Coliform Microbe

CRM Cat. #083 PT Cat. #576 M

QR Cat. #786QR

Each PT sample is one lyophilized quantitative standard for use with all Clean Water Act quantitative methods, including MF and MPN. If determining MPN by SM 9221 or similar multiple tube techniques, use 083A, 576A, or 786A.

CRM also includes one blank sample. Each standard can be used for total coliform, fecal coliform, and *E. coli* which are present in the range 20–2400 CFU/100 mL or MPN/100 mL.

Wastewater Coliform Microbe - 9221

CRM Cat. #083A PT Cat. #576A M

QR Cat. #786AQR

Each PT sample is one lyophilized quantitative standard for use with Standard Methods 9221 or similar multiple tube techniques.

CRM also includes one blank sample. Each standard can be used for total coliform, fecal coliform, and *E. coli* which are present in the range of 20–2400 MPN/100 mL.

Enterococci

CRM Cat. #081

PT Cat. #880 Q

QR Cat. #787QR

Each PT sample is one lyophilized standard, which can be analyzed for enterococci and/or fecal streptococci, MF or MPN in the range 20–1000 CFU/100 mL or MPN/100 mL.

CRM also includes one blank sample. Use with EPA Methods 1106.1 and 1600, ASTM Methods D5259-92, D6503-99, and Standard Methods 9230B and 9230C, and Enterolert Quantitray.

Heterotrophic Plate Count

PT Cat. #935

One lyophilized sample containing a Heterotrophic bacteria. SPC PT standards are required for laboratories seeking NELAC accreditation as well as by many other state programs.

B Offered Biannually in March and September.

State-Specific Microbiology

Massachusetts Ground Water Enterococci

CRM Cat. #081 **PT** Cat. #077

Each PT sample set is composed of 10 lyophilized samples to be analyzed for presence or absence of enterococci. This sample is specifically designed for the State of Massachusetts certification for compliance with the federal Ground Water Rule. Each CRM sample set is composed of two lyophilized samples - one quantitative positive and one blank.

* Massachusetts Ground Water Enterococci PT is available any time.

WS Microbiology

Heterotrophic Plate Count

CRM Cat. #084 PT Cat. #079 M

QR Cat. #084OR

Each sample is one lyophilized standard containing a heterotrophic bacteria present in the range 5–500 CFU/mL or MPN/mL. Use with the Standard Methods 9215B – Pour Plate Method, and Most Probable Number (MPN) Method (simplate).

Potable Water Coliform Microbe

CRM Cat. #694

PT Cat. #080 M

QR Cat. #085QR

Each sample set consists of lyophilized standards for the presence or absence analysis of total coliform, fecal coliform, and *E. coli*. The standards are applicable to all SDWA promulgated methods-MF, MPN, presence/absence, and ONPG-MUG. The Potable Water Coliform Microbe PT standard is available in all 12-monthly WS studies.

Source Water Microbe

CRM Cat. #078 PT Cat. #595 0

QR Cat. #078QR

Each sample is one lyophilized quantitative standard containing *E. coli* in the range 20–200 CFU/100 mL or MPN/100 mL. Use with all SDWA quantitative methods. Each standard can be used for total coliform, fecal coliform, and *E. coli*. If determining MPN by SM 9221 or similar multiple tube techniques, use 078A, 595A, and 078AQR.

Source Water Microbe - 9221

CRM Cat. #078A

PT Cat. #595A O

QR Cat. #078AQR

Each sample is one lyophilized quantitative standard containing *E. coli* in the range of 20–200 MPN/100 mL for use with Standard Methods 9221 or similar multiple tube techniques. Each standard can be used for total coliforms, fecal coliforms, and *E. coli*.

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

All Waters ERA Microbiology PTs open monthly (M) or quarterly (Q). Quarterly months are January, April, July, and October.

Mike Blades
Technical Manager
Years with Waters ERA: 26

GOING BEYOND THE STANDARD

Supplying Proficiency Testing (PT) and Certified Reference Material (CRM) standards is not unique. What sets us apart is our commitment to being more than a standards provider. Since 1977, we've worked as your partner, helping you produce reliable, defensible data, maintain critical accreditations, and make your laboratory successful.

- Data Tools to Help You Succeed: eDATA online PT data management portal allows you to effectively manage your proficiency testing program, assess risk, and evaluate trends over time.
- Expert Guidance at Your Fingertips: Direct access to one of the most qualified Customer Service and Technical Support teams in the environmental PT and CRM industry.
- Superior Standards for Better Results: Waters ERA maintains ISO 17025, ISO 17034, and ISO 17043 accreditations, giving you greater confidence in your data due to the largest studies, two-day report turn-around time, and more reliable performance evaluations.

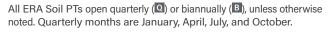
SOIL Matrices designed to fulfill requirements for monitoring soil and solid matrices. Dried and homogenized standards of soil and sewage sludge may be used to satisfy PT requirements. Soil (including UST in Soil) PT Schedule 2020 2021 Scheme # Scheme # Opens Closes **Opens** Closes Q **SOIL 109** Q **SOIL 113** Jan 20 Mar 5 Jan 25 Mar 11 Q **SOIL 110** Jun 4 Q **SOIL 114** Jun 3 Apr 20 Apr 19 Q **SOIL 111** Jul 20 Sep 3 Q **SOIL 115** Jul 26 Sep 9 Q **SOIL 112** Oct 16 Nov 30 Q **SOIL 116** Oct 22 Dec 6

Schedule subject to change - see Waters ERA's website at www.eraqc.com

Contents

Description	CRM	PT	QR	Page
1,4-Dioxane in Soil	538	461 B	538QR	39
Anions in Soil	543	873 Q	543QR	39
Base/Neutrals & Acids in Soil	727	467 Q	727QR	41
BTEX & MTBE in Soil	761	633 Q	761QR	40
Carbamate Pesticides in Soil	926	879 Q	926QR	43
Chlordane in Soil	725	628 Q	725QR	43
Chlorinated Acid Herbicides in Soil	723	626 Q	723QR	42
Corrosivity/pH in Soil	914	875 Q	914QR	38
Cyanide in Soil	541	621 Q	541QR	39
Diesel Range Organics (DRO) in Soil	765	631 Q	765QR	41
Gasoline Range Organics (GRO) in Soil	763	630 Q	763QR	39
Glycols in Soil	928	463 Q	928QR	41
Hexavalent Chromium in Soil	921	876 Q	921QR	38
Ignitability/Flash Point	979	874 Q	979QR	38
Low-Level PAHs in Soil	722	625 Q	722QR	41
Metals & Cyanide Blank Sand	058	_	_	43
Metals & Cyanide Blank Soil	057	_	_	43
Metals in Sewage Sludge	160	619 Q	160QR	38
Metals in Soil	540	620 Q	540QR	38
Nitroaromatics & Nitramines in Soil	920	871 Q	920QR	41

Description	CRM	PT	QR	Page
Nutrients in Sludge	545	_	_	39
Nutrients in Soil	542	869 Q	542QR	39
Oil & Grease in Soil	549	867 Q	549QR	39
Organochlorine Pesticides in Soil	728	468 Q	728QR	43
Organophosphorus Pesticides (OPP) in Soil	925	878 Q	925QR	43
PCBs in Oil	563	817 Q	563QR	42
PCBs in Oil Standards		see page 42	for options	
PCBs in Soil	726	624 Q	726QR	42
PCBs in Soil Standards		see page 42	for options	
Per- and Polyfluoroalkyl Substances (PFAS) in Soil	604	462 Q	604QR	41
Ready-to-Use VOAs in Soil	924	870 Q	924QR	40
TCLP Metals in Soil	544	629 Q	544QR	38
TCLP Organochlorine Pesticides	732	_	732QR	40
TCLP Semivolatiles	737	_	737QR	40
TCLP Volatiles	730	_	730QR	40
Total Petroleum Hydrocarbons (TPH) in Soil #1	570	632 Q	572QR	40
Total Petroleum Hydrocarbons (TPH) in Soil #2	571	632 Q	572QR	40
Toxaphene in Soil	724	627 Q	724QR	43
Volatiles in Soil	721	623 Q	721QR	39


CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

PT: A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

QR: Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

Metals

Metals in Soil

CRM Cat. #540

PT Cat. #620

Q

QR Cat. #540QR

One 40 g soil sample in a screw-cap bottle for all ICP and AA, RCRA and Superfund Methods including EPA Digestion Methods 3050 Hot Plate and 3051 Microwave, or other applicable methods. Includes all metals shown below.

Aluminum	
Antimony	80–300 mg/kg
Arsenic	40-400 mg/kg
Barium	100-1000 mg/kg
Beryllium	40-400 mg/kg
Boron	80-800 mg/kg
Cadmium	40-400 mg/kg
Calcium	1500-25,000 mg/kg
Chromium	40-400 mg/kg
Cobalt	40-400 mg/kg
Copper	40–400 mg/kg
Iron	5000-50000 mg/kg
Lead	40–400 mg/kg
Magnesium	
Manganese	100–2000 mg/kg
Mercury	1–35 mg/kg
Molybdenum	30–300 mg/kg
Nickel	40–500 mg/kg
Potassium	1400–25,000 mg/kg
Selenium	40-400 mg/kg
Silver	20-100 mg/kg
Sodium	150-15,000 mg/kg
Strontium	40-400 mg/kg
Thallium	40-400 mg/kg
Tin	50-250 mg/kg
Titanium	10-2000 mg/kg
Uranium	1–250 mg/kg
Vanadium	40-400 mg/kg
Zinc	100-1000 mg/kg

Hexavalent Chromium in Soil

CRM Cat. #921 **PT** Cat. #876

QR Cat. #921QR

One 40 g standard in a screw-cap bottle for use with all promulgated hexavalent

Hexavalent chromium......40-300 mg/kg

TCLP Metals in Soil

CRM Cat. #544

PT Cat. #629

Q

QR Cat. #544QR

One 105 g soil standard in a screw-cap bottle designed specifically to meet all state requirements for TCLP extraction and analysis for the metals listed below. Sample is designed to be extracted with fluid #1.

 Antimony
 Cadmium
 Nickel

 Arsenic
 Chromium
 Selenium

 Barium
 Lead
 Silver

 Beryllium
 Mercury
 Zinc

Metals in Sewage Sludge

CRM Cat. #160 **PT** Cat. #619

Q

QR Cat. #160QR

One 40 g sludge standard in a screw-cap bottle to be analyzed for the metals listed below.

Aluminum	1000-50,000 mg/kg
AluminumAntimony	80–300 mg/kg
Arsenic	50–400 mg/kg
Barium	250-2000 mg/kg
Beryllium	30-200 mg/kg
Cadmium	40–300 mg/kg
Calcium	5000-70,000 mg/kg
Chromium	40–300 mg/kg
Cobalt	5-50 mg/kg
Copper	40-1000 mg/kg
Iron	1000-50,000 mg/kg
Lead	50-250 mg/kg
Magnesium	1200–25,000 mg/kg
MagnesiumManganese	100-2000 mg/kg
Mercury	1-50 ma/ka
Molybdenum	5-250 mg/kg
Nickel	40-250 mg/kg
Potassium	1400-25,000 mg/kg
Selenium	50-250 mg/kg
Silver	50-250 mg/kg
Sodium	150-15,000 mg/kg
Strontium	200-2000 mg/kg
Thallium	50-250 mg/kg
Vanadium	5-250 mg/kg
Zinc	70–1500 mg/kg

Physical Parameters

Corrosivity/pH in Soil

CRM Cat. #914

PT Cat. #875

QR Cat. #914QR

One 100 g soil standard in a screw-cap bottle. Use to measure corrosivity.

Corrosivity/pH......2-12 S.U.

Ignitability/Flash Point

CRM Cat. #979 **PT** Cat. #874 Q

QR Cat. #979OR

One standard packaged in three 30 mL bottles. Use to measure ignitability.

Ignitability/flashpoint.....100-200 °F

Oil & Grease

Oil & Grease in Soil

CRM Cat. #549

PT Cat. #867 Q

QR Cat. #549QR

One screw-cap bottle containing 50 g of soil ready to analyze. Use with gravimetric method 9071B or infrared spectrometric analysis.

Inorganics

Anions in Soil

CRM Cat. #543 **PT** Cat. #873

Q

QR Cat. #543QR

One 40 g soil standard in a screw-cap bottle designed for a DI water extraction procedure for all the anions listed below.

Bromide	10-100 mg/kg
Chloride	200-1000 mg/kg
Fluoride	25-500 mg/kg
Nitrate as N	25-500 mg/kg
Phosphate as P	
Sulfate	25-2000 mg/kg

Cyanide in Soil

CRM Cat. #541 **PT** Cat. #621 Q

QR Cat. #541QR

One 40 g soil standard in a screw-cap bottle for all distillation/colorimetric methods.

Nutrients in Soil

CRM Cat. #542

Cat. #869

Q

QR Cat. #542QR

One 40 g soil standard in a screw-cap bottle. Use to analyze for all the nutrients listed below.

Ammonia as N	300-3000 mg/kg
Total Kjeldahl nitrogen as N	400-4000 mg/kg
Total organic carbon (TOC)	1000-20,000 mg/kg
Total phosphorus as P	300-3000 mg/kg

Nutrients in Sludge

CRM

Cat. #545

One 40 g sludge standard in a screw-cap bottle is ready for analysis.

Ammonia as N	0.1-5% (w/w)
Total Kjeldahl nitrogen as N	2-10% (w/w)
Total organic carbon (TOC)	5-50% (w/w)
Total phosphorus as P	0.5-10% (w/w)

Volatiles

Volatiles in Soil

CRM Cat. #721 **PT** Cat. #623

Q

QR Cat. #721QR

One 2 mL flame-sealed ampule in methanol requires spiking onto the provided ten grams of solid matrix before analysis. Use with EPA Methods 8021, 8260, or other applicable methods. Includes a subset of the analytes listed below at $20-200~\mu g/kg$ ($40-400~\mu g/kg$ for total xylenes, 80-1000 for selected ketones, and $100-1000~\mu g/kg$ for acetonitrile).

1.3-Dichlorobenzene

1,4-Dichlorobenzene

Dichlorodifluoromethane

Acetone
Acetonitrile
Acrolein
Benzene
Bromobenzene
Bromochloromethane
Bromoform
Bromomethane
2-Butanone (MEK)

2-Butanone (MEK)
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide

Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane

2-Chloroethyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene

4-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP)

1,2-Dibromoethane (EDB)
Dibromomethane
1,2-Dichlorobenzene

1,1-Dichloroethane
1,2-Dichloroethylene
cis-1,2-Dichloroethylene
trans-1,2-Dichloroethylene
1,2-Dichloropthylene
1,2-Dichloropropane
1,3-Dichloropropane
1,1-Dichloropropane
cis-1,3-Dichloropropylene
trans-1,3-Dichloropropylene
Ethylbenzene
Hexachlorobutadiene
Hexachloroethane

2-Hexanone Isopropylbenzene p-Isopropyltoluene Methyl tert-butyl ether (MTBE) 4-Methyl-2-pentanone (MIBK) Methylene chloride

e Naphthalene Nitrobenzene n-Propylbenzene Styrene

1,1,1,2-Tetrachloroethane

Tetrachloroethene Toluene 1.2.3-Trichlorobenzene 1.2.4-Trichlorobenzene 1,1,1-Trichloroethane 1.1.2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride m&p-Xylene o-Xvlene Xylenes, total

1.1.2.2-Tetrachloroethane

This standard is not compliant with the NELAC concentration for hexachloroethane, hexachlorobutadiene, and nitrobenzene. If a NELAC compliant sample is required for these analytes, use Ready-to-Use VOAs in Soil, or Base/Neutrals and Acids in Soil.

1,4-Dioxane in Soil

NEW PRODUCT

CRM Cat. #538 **PT** Cat. #461 В

QR Cat. #538OR

One 2 mL flame-sealed ampule requires spiking onto the provided ten grams of solid matrix before analysis. Use with modified versions of EPA method 8260, 1624 or other applicable methods.

1,4-Dioxane......20-200 ug/kg

Gasoline Range Organics (GRO) in Soil

CRM Cat. #763

PT Cat. #630

Q

QR Cat. #763QR

One flame-sealed ampule with 20 g of soil spiked with unleaded regular gasoline in the range 100–2000 mg/kg. Use with purge and trap and modified EPA 8015 GC/FID Methods, or other applicable methods. Also use to test for BTEX in gasoline.

Note: This standard is not compliant with the NELAC concentration ranges for the BTEX analytes. If a NELAC-compliant sample for these analytes is required, use Volatiles in Soil, Cat. #623 or BTEX & MTBE Soil, Cat. #633.

All ERA Soil PTs open quarterly () or biannually (), unless otherwise noted. Quarterly months are January, April, July, and October.

Volatiles (continued)

BTEX & MTBE in Soil

CRM Cat. #761

PT Cat. #633

QR Cat. #761QR

One 2 mL flame-sealed ampule requires spiking onto the ten grams of provided certified clean soil. Includes the anlaytes below at 20–200 μ g/kg (40–400 μ g/kg for total xylenes). Use with EPA Method 8021, or other applicable methods.

Benzene Ethylbenzene Methyl tert-butyl ether (MTBE)

Xylenes, total m&p Xylene o-Xylene

Ready-to-Use VOAs in Soil

CRM Cat. #924

PT Cat. #870

QR Cat. #924OR

One 20 mL flame-sealed ampule containing 10 g of soil and 10 mL of methanol is ready to analyze. Use with EPA Methods 8021, 8260, or other applicable methods. Includes a subset of the analytes listed below at $1000-20,000 \, \mu g/kg$.

Acetone Acetonitrile Acrolein Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1.3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1.2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene Ethylbenzene Hexachlorobutadiene Hexachloroethane 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methyl tert-butyl ether (MTBE)

4-Methyl-2-pentanone (MIBK)

Methylene chloride Naphthalene Nitrobenzene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1.1.2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride m&p-Xvlene o-Xylene Xylenes, total

Total Petroleum Hydrocarbons

Total Petroleum Hydrocarbons (TPH) in Soil #1

CRM Cat. #570 PT Cat. #632

QR Cat. #572QR

One screw-top bottle with 50 g of soil to be analyzed for TPH. Use with EPA IR or Gravimetric Methods 8440, 9071B, or other applicable methods.

Total Petroleum Hydrocarbons (TPH) in Soil #2

CRM Cat. #571 PT Cat. #632 Q

QR Cat. #572QR

One screw-top bottle with 50 g of soil to be analyzed for TPH in the presence of interfering fatty acids. Use with EPA IR or Gravimetric Methods 8440, 9071B, or other applicable methods.

Non-polar extractable material (TPH) (Gravimetric).......300–3000 mg/kg Non-polar extractable material (TPH) (IR)......300–3000 mg/kg

TCLP

TCLP Volatiles

CRM Cat. #730 QR Cat. #730QR

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.05–2.0 mg/L.

Benzene
2-Butanone (MEK)
Carbon tetrachloride
Chlorobenzene

Chloroform 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene Tetrachloroethylene Trichloroethylene Vinyl chloride

TCLP Semivolatiles

CRM Cat. #737 QR Cat. #737QR

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.1–2.0 mg/L after dilution. All unspiked analytes are certified at <0.5 mg/L.

1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachloroethane 2-Methylphenol Pentachlorophenol Pyridine 2,4,5-Trichlorophenol

Hexachlorobenzene 3 & 4-Methylphenol Hexachlorobutadiene Nitrobenzene

2,4,6-Trichlorophenol

TCLP Organochlorine Pesticides

CRM Cat. #732 QR Cat. #732QR

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.01–0.2 mg/L after dilution. All unspiked analytes are certified at <0.1 mg/L.

Endrin Heptachlor Heptachlor epoxide gamma-BHC (Lindane)

Methoxychlor

Semivolatiles

Nitroaromatics & Nitramines in Soil

CRM Cat. #920

PT Cat. #871 Q

QR Cat. #920QR

Two flame-sealed ampules each containing 30 g of soil are ready to analyze. Use for EPA Methods 8330, 8091, or other applicable methods. Includes a subset of the analytes listed below at $1500-15,000~\mu g/kg$.

4-Amino-2,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene HMX Nitrobenzene RDX Tetryl

1,3-Dinitrobenzene 2,4-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 1,3,5-Trinitrobenzene 2,4,6-Trinitrotoluene

2,6-Dinitrotoluene 4-Nitrotoluene

Per- & Polyfluoroalkyl Substances (PFAS) in Soil

CRM Cat. #604 **PT** Cat. #462

Q

QR Cat. #604OR

One flame-sealed ampule containing 10 g of soil. The standard is certified for all analytes listed below. Each lot will be spiked with 6-12 of the analytes specified in the range of 20-100 $\mu g/kg$ (40-100 $\mu g/kg$ for HFPO-DA). Design is suitable for methods analyzing these components with LC-MS/MS techniques.

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)......20-100 µg/kg 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)......20-100 µg/kg 4,8-dioxa-3H-perfluorononanoic acid (DONA)...... N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA).......20-100 μg/kg 1H. 1H. 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)......20-100 ug/kg 1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)......20-100 μg/kg 1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS).....20-100 $\mu g/kg$ Hexafluoropropylene oxide dimer acid (HFPO-DA)..... N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)......20-100 µg/kg Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic acid (PFBA)...... Perfluorodecane sulfonic acid (PFDS).....20-100 µg/kg Perfluorodecanoic acid (PFDA).....20-100 µg/kg Perfluorododecanoic acid (PFDoA).....20-100 μg/kg Perfluoroheptane sulfonic acid (PFHpS)20-100 μg/kg Perfluoroheptanoic acid (PFHpA)......20-100 µg/kg Perfluorohexanesulfonic acid (PFHxS)......20-100 μg/kg20-100 μg/kg Perfluorohexanoic acid (PFHxA)..... Perfluorononane sulfonic acid (PFNS)......20-100 μg/kg20-100 µa/ka Perfluorononanoic acid (PFNA)..... Perfluorooctane sulfonamide (PFOSAm).....20-100 µg/kg Perfluorooctanesulfonic acid (PFOS)......20-100 µg/kg Perfluorooctanoic acid (PFOA)..... Perfluoropentanoic acid (PFPeA)20-100 μg/kg Perfluoropentane sulfonic acid (PFPeS)20-100 µg/kg Perfluorotetradecanoic acid (PFTDA)......20-100 µg/kg Perfluorotridecanoic acid (PFTrDA)......20-100 µg/kg Perfluoroundecanoic acid (PFUnDA).....20-100 μg/kg

Low-Level PAHs in Soil

CRM Cat. #722 **PT** Cat. #625

QR Cat. #722QR

Two flame-sealed ampules each containing 30 g are ready to analyze. Use for EPA HPLC Method 8310, 8270 SIM, or other applicable method. Includes a subset of the analytes listed below at 50– $1000~\mu g/kg$.

Acenaphthene
Acenaphthylene
Anthracene
Benzo(a)anthracene
Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenz(a,h)anthracene Fluoranthene

Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

Diesel Range Organics (DRO) in Soil

CRM Cat. #765 PT Cat. #631 Q

QR Cat. #765QR

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel Fuel in the range 300–3000 mg/kg. Use with modified EPA Method 8015, or other applicable GC/FID methods.

Glycols in Soil

CRM Cat. #928 PT Cat. #463 Q

QR Cat. #928OR

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA Methods 8015B, 8430, 1671, or other applicable method. Includes all the analytes listed below at 75-200 mg/kg.

Diethylene glycol Ethylene glycol Propylene glycol Tetraethylene glycol Triethylene glycol

Base/Neutrals & Acids in Soil

CRM Cat. #727

P1 Cat. #467

Q

QR Cat. #727QR

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA Method 8270, or other applicable method. Includes a subset of the analytes listed below at $1000-15,000~\mu g/kg$.

Dibenz(a,h)anthracene

Dibenzofuran

Acenaphthene Acenaphthylene 2-Amino-1-methylbenzene (o-Toluidine) Aniline Anthracene Benzidine Benzoic acid Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a,h,i)pervlene Benzo(a)pyrene Benzyl alcohol 4-Bromophenyl phenyl ether Butyl benzyl phthalate

Butyl benzyl phthalate Carbazole 4-Chloroaniline bis(2-Chloroethyl)ether bis(2-Chloroethoxy)methane 4-Chloro-3-methylphenol 1-Chloronaphthalene 2-Chloronaphthalene 2-Chlorophenol

Chrysene

Di-n-butyl phthalate 1,2-Dichlorobenzene 1.3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol 2,6-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 2,4-Dinitrophenol 2.4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene

Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methyl-4,6-dinitrophenol 2-Methylnaphthalene 2-Methylphenol 3 & 4-Methylphenol Naphthalene

Naphthalene
2-Nitroaniline
3-Nitroaniline
4-Nitroaniline
Nitrobenzene
2-Nitrophenol
4-Nitrophenol
N-Nitrosodiethylamine

N-Nitrosodimethylamine
N-Nitroso-di-n-propylamine
N-Nitroso-di-n-propylamine
2,2'-Oxybis(1-Chloropropane)
Pentachlorobenzene
Pentachlorophenol
Phenanthrene
Phenol
Pyrene

Pyridine 1,2,4,5-Tetrachlorobenzene 2,3,4,6-Tetrachlorophenol 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol

All ERA Soil PTs open quarterly (12) or biannually (13), unless otherwise noted. Quarterly months are January, April, July, and October.

Herbicides

Chlorinated Acid Herbicides in Soil

CRM Cat. #723 **PT** Cat. #626

Q

QR Cat. #723QR

Two flame-sealed ampules, each containing 30 g of soil are ready-to-use. Use with EPA Method 8151, or other applicable methods. Includes a subset of the analytes listed below at $100-1000~\mu\text{g/kg}$ (MCPA & MCPP $1000-10,000~\mu\text{g/kg}$).

Acifluorfen Dalapon MCPF)
Bentazon Dicamba 4-Nitr	rophenol
Chloramben 3,5-Dichlorobenzoic acid Penta	chlorophen
2,4-D Dichlorprop Piclor	am
2,4-DB Dinoseb 2,4,5-	Τ
Dacthal diacid (DCPA) MCPA 2,4,5-	TP (Silvex)

This standard is not compliant with the NELAC concentration for 4-Nitrophenol. If a NELAC compliant sample is required for this analyte, use Base/Neutrals and Acids in Soil.

PCBs

PCBs in Oil

CRM Cat. #563 **PT** Cat. #817

Q

QR Cat. #563QR

One 10 mL flame-sealed ampule is ready to analyze. Contains a different Aroclor, randomly selected from the list below at 10–50 mg/kg.

Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260

PCBs in Oil Standards

PCBs in oil standards are sold individually in ready-to-use flame-sealed ampules with 5 g of oil. Use with EPA Methods 8082, EPA-600/4-81-045, Sept. 1982, or other applicable methods. LOW LEVEL standards contain an aroclor in the range 10-50 ppm. HIGH LEVEL standards contain an aroclor in the range 51-500 ppm.

CRM Cat. #	Concentration	Aroclor	Range
820	Low	1242	10-50 ppm
821	High	1242	51-500 ppm
826	Low	1248	10-50 ppm
827	High	1248	51-500 ppm
822	Low	1254	10-50 ppm
823	High	1254	51-500 ppm
824	Low	1260	10-50 ppm
825	High	1260	51-500 ppm

PCBs in Soil

CRM Cat. #726 PT Cat. #624 Q

QR Cat. #726QR

One screw-top bottle containing 50 grams of standard is ready to analyze. Use with EPA Method 8082, or other applicable methods. Each standard includes a different aroclor randomly selected from the list below at 1–50 mg/kg.

Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260

Aroclor 1232

PCBs in Soil Standards

PCBs in soil standards are sold individually in screw-top bottles containing 50 g of soil. Use with EPA Methods 8082, 4020, or other applicable methods. LOW LEVEL standards contain an aroclor in the range 0.5–50 ppm. HIGH LEVEL standards contain an aroclor in the range 51–500 ppm.

CRM Cat.#	Concentration	Aroclor	Range
490	Low	1242	0.5-50 ppm
491	High	1242	51-500 ppm
496	Low	1248	0.5-50 ppm
497	High	1248	51-500 ppm
492	Low	1254	0.5-50 ppm
493	High	1254	51-500 ppm
494	Low	1260	0.5-50 ppm
495	High	1260	51-500 ppm

Darwin Baxter Application Engineer Years with Waters ERA: 12

Pesticides

Organochlorine Pesticides in Soil

CRM Cat. #728 Cat. #468

Q

QR Cat. #728QR

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA Method 8081, or other applicable methods. Includes a subset of the analytes listed below at 50-500 µg/kg.

Aldrin 4,4'-DDD alpha-BHC 4,4'-DDE beta-BHC 4,4'-DDT delta-BHC Dieldrin gamma-BHC (Lindane) Endosulfan I alpha-Chlordane Endosulfan II gamma-Chlordane Endosulfan sulfate Endrin Endrin aldehvde Endrin ketone Heptachlor Heptachlor epoxide Methoxychlor

Chlordane in Soil

CRM Cat. #725

PT Cat. #628 Q

QR Cat. #725QR

One screw-top bottle containing 50 g of soil is ready to analyze. Use with EPA Method 8081, or other applicable methods. The standard contains technical chlordane at 100-1000 μg/kg.

Toxaphene in Soil

CRM Cat. #724

Cat. #627

QR Cat. #724OR

One screw-top bottle containing 50 g of soil is ready to analyze. Use with EPA Method 8081, or other applicable methods. The standard contains toxaphene at 200-2000 μg/kg.

Carbamate Pesticides in Soil

CRM Cat. #926

Cat. #879

QR Cat. #926QR

Two flame-sealed ampules, each containing 30 g of soil are ready to analyze. Use with EPA Methods 8318, 8321, or other applicable methods. Each standard contains a subset of the analytes listed below at 250-2500 µg/kg.

Aldicarb Dioxacarb Aldicarb sulfone Diuron Aldicarb sulfoxide 3-Hydroxycarbofuran Carbaryl Methiocarb Carbofuran Methomyl

Organophosphorus Pesticides (OPP) in Soil

CRM Cat. #925

Cat. #878

Q

QR Cat. #925QR

Two flame-sealed ampules, each containing 30 g of soil are ready to analyze. Use with EPA Method 8141, or other applicable methods. Each standard contains a subset of the analytes listed below at 100-1000 µg/kg.

Azinphos-methyl (Guthion) Chlorpyrifos

Dichlorvos (DDVP) Disulfoton

Phorate Ronnel

Oxamvl

Promecarb

Propham

Propoxur

Ethyl parathion (Parathion) Demeton O & S Malathion Methyl parathion Diazinon

Stirophos (Tetrachlorovinphos) Terbufos

Blank Soil

Metals & Cyanide Blank Sand

CRM Cat. #058

One 40 g sand sample in a screw-cap bottle. The concentrations of all EPA/NELAC including the priority pollutant metal and cyanide analytes are below the CLP

Metals & Cyanide Blank Soil

Required Detection Limits (CRDLs) except iron, which is <250 mg/kg.

CRM

Cat. #057

One 40 g soil sample in a screw-cap bottle. The concentrations of all of the following analytes are below the CLP CRDL's: antimony, arsenic, beryllium, cadmium, cobalt, mercury, nickel, selenium, silver, sodium, thallium, and cyanide. The concentrations of the following analytes are below 10x the CLP CRDL's: barium, chromium, copper, lead, magnesium, potassium, and vanadium. The concentrations of manganese and zinc are <750 mg/kg. The concentration range for aluminum, calcium, and iron is 3000-25,000 mg/kg.

All ERA Soil PTs open quarterly (Q) or biannually (B), unless otherwise noted. Quarterly months are January, April, July, and October.

WITH eDATA: BOD, COD, AND TOC CAN BE AS EASY AS CSV!

Your time is valuable and should be spent doing more important things than manually entering PT results. Achieve piece of mind knowing that transcription errors are eliminated when you upload your PT results to Waters ERA's online PT data management portal – eDATA.

eDATA allows you to:

- Identify failures and risks to your accreditation
- Review your performance and evaluate overall results
- Investigate root cause and evaluate corrective actions
- Proactively monitor analyte risk to identify possible future non-conformances

Learn more at www.eraqc.com/eDATA

UNDERGROUND STORAGE TANK

Our Underground Storage Tank (UST) products in water and soil matrices are purposefully designed to meet accreditation requirements for Petroleum Hydrocarbons analysis in various jurisdictions.

2021

UST in Water PT Scheme Schedule 2020

	Scheme #	Opens	Closes	
Q	WP 300	Jan 13	Feb 27	
Q	WP 303	Apr 13	May 28	
Q	WP 306	Jul 13	Aug 27	
Q	WP 309	Oct 9	Nov 23	

	Scheme #	Opens	Closes
Q	WP 312	Jan 18	Mar 4
Q	WP 315	Apr 12	May 27
Q	WP 318	Jul 19	Sep 2
Q	WP 321	Oct 15	Nov 29

Soil (including UST in Soil) PT Schedule 2020 2021

	Scheme #	Opens	Closes
Q	SOIL 109	Jan 20	Mar 5
Q	SOIL 110	Apr 20	Jun 4
Q	SOIL 111	Jul 20	Sep 3
Q	SOIL 112	Oct 16	Nov 30

AND THE PERSON NAMED IN COLUMN 2		AND THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO SHARE THE PERSON NAMED IN COLUMN TWO IN COLUMN TO SHARE THE PERSON NAMED IN COLUMN TWO IN COL	The second secon
	Scheme#	Opens	Closes
Q	SOIL 113	Jan 25	Mar 11
Q	SOIL 114	Apr 19	Jun 3
Q	SOIL 115	Jul 26	Sep 9
Q	SOIL 116	Oct 22	Dec 6

Schedule subject to change - see Waters ERA's website at www.eraqc.com

Contents

Description	CRM	PT	QR	Page
Alaska BTEX in Soil	636	_	470QR	49
Alaska BTEX in Water	646	_	474QR	49
Alaska DRO in Soil	637	_	471QR	49
Alaska DRO in Water	647	_	475QR	49
Alaska GRO in Soil	635	_	469QR	49
Alaska GRO in Water	645	_	473QR	49
Alaska RRO in Soil	638	_	472QR	49
Arizona TPH in Soil	798	488 Q	798QR	49
BTEX & MTBE in Soil	761	633 Q	761QR	48
BTEX & MTBE in Water	760	643 Q	760QR	48
Diesel Range Organics in Soil	765	631 Q	765QR	48
Diesel Range Organics in Water	764	641 Q	764QR	48
Gasoline Range Organics in Soil	763	630 Q	763QR	48
Gasoline Range Organics in Water	762	640 Q	762QR	48
Massachusetts EPH in Soil	569	484 Q	569QR	50
Massachusetts VPH in Soil	568	483 Q	568QR	50
Massachusetts EPH in Water	567	482 Q	567QR	50
Massachusetts VPH in Water	566	481 Q	566QR	50

Description	CRM	PT	QR	Page
New Jersey EPH in Soil	564	464 B	564QR	50
Texas High-Level Fuels in Soil	797	479 Q	797QR	49
Texas High-Level Fuels in Water	795	477 Q	795QR	49
Texas Low-Level Fuels in Soil	796	478 Q	796QR	49
Texas Low-Level Fuels in Water	794	476 Q	794QR	49
Total Petroleum Hydrocarbons (TPH) in Soil #1	570	632 Q	572QR	48
Total Petroleum Hydrocarbons (TPH) in Soil #2	571	632 Q	572QR	48
Total Petroleum Hydrocarbons (TPH) in Water #1	600	642 Q	602QR	48
Total Petroleum Hydrocarbons (TPH) in Water #2	601	642 Q	602QR	48
Washington HEM/SGT-HEM	519	489 Q	519QR	50
Wisconsin Gasoline Range Organics (GRO/PVOC) in Water	773	649 Q	773QR	50
Wisonsin Diesel Range Organics (DRO) in Water	772	648 Q	772QR	50

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

PT: A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

QR: Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

All Waters ERA UST PTs open quarterly (Q) unless otherwise noted. Quarterly months are January, April, July, and October.

B Waters ERA NJ EPH in Soil PT opens in April and October.

UST in Soil

BTEX & MTBE in Soil

CRM Cat. #761 Cat. #633

QR Cat. #761QR

One 2 mL flame-sealed ampule requires spiking onto the ten grams of provided certified clean soil. Includes all the BTEX compounds and MTBE at 20-200 µg/kg (40-400 µg/kg for total xylenes). Use with EPA Method 8021, or other applicable methods.

Gasoline Range Organics (GRO) in Soil

CRM Cat. #763 Cat. #630

OR Cat. #763QR

One flame-sealed ampule with 20 g of soil spiked with unleaded regular gasoline in the range 100-2000 mg/kg. Use with purge and trap and modified EPA Method 8015, or other applicable GC/FID methods. Also use to test for BTEX in gasoline.

Note: This standard is not compliant with the NELAC concentration ranges for the BTEX analytes. If a NELAC-compliant sample for these analytes is required, use Volatiles in Soil, Cat. #623 or BTEX & MTBE Soil, Cat. #633.

Diesel Range Organics (DRO) in Soil

CRM Cat. #765

PT Cat. #631

QR Cat. #765QR

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel Fuel in the range 300-3000 mg/kg. Use with modified EPA Method 8015, or other applicable GC/FID methods.

Total Petroleum Hydrocarbons (TPH) in Soil #1

Cat. #570

Cat. #632

Cat. #572QR

One screw-top bottle with 50 g of soil to be analyzed for total petroleum hydrocarbons (TPH). Use with EPA IR, Gravimetric Methods 8440 and 9071B, or other applicable methods.

Non-polar extractable material (TPH) (Gravimetric)......300-3000 mg/kg Non-polar extractable material (TPH) (IR).....

Total Petroleum Hydrocarbons (TPH) in Soil #2

CRM

Cat. #571

Cat. #572OR

One screw-top bottle contains 50 g of soil with TPH in the presence of interfering fatty acids. Use with EPA Methods 8440, 9071B, or other applicable methods.

Cat. #632

Non-polar extractable material (TPH) (Gravimetric)......300-3000 mg/kg Non-polar extractable material (TPH) (IR)..

UST in Water

BTEX & MTBE in Water

CRM Cat. #760

Cat. #643

OR Cat. #760QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA Methods 602, 8021, or other applicable methods. Includes all BTEX compounds and MTBE at 5-300 µg/L after dilution.

Gasoline Range Organics (GRO) in Water

CRM Cat. #762

Cat. #640

OR Cat. #762OR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with both purge and trap, and modified EPA Method 8015, or other applicable GC/FID methods to test for GRO at $400-4000 \mu g/L$. Also use to test for BTEX in gasoline.

Diesel Range Organics (DRO) in Water

CRM Cat. #764

Cat. #641

QR Cat. #7640R

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with modified EPA Method 8015, or other applicable GC/FID methods. Includes #2 Diesel Fuel at 800-6000 µg/L.

Total Petroleum Hydrocarbons (TPH) in Water #1

CRM Cat. #600

Cat. #642

OR Cat. #602QR

One liter whole-volume bottle is ready to analyze for total petroleum hydrocarbons (TPH) without interferring fatty acids. Use with EPA Methods 418.1, 1664, 5520, or other applicable methods.

Total petroleum hydrocarbons.....

Total Petroleum Hydrocarbons (TPH) in Water #2

CRM Cat. #601

Cat. #642

Cat. #602QR

One liter whole-volume bottle is ready to analyze for TPH in water in the presence of interfering fatty acids. Use with EPA Methods 418.1, 1664, 5520, 8440, or other applicable methods.

Total petroleum hydrocarbons.....20-200 mg/L

Laura Stone Inorganic Chemist Years with Waters ERA: 9

Alaska UST in Water

Alaska GRO in Water

CRMCat. #645

Cat. #473QR

One 2 mL flame-sealed ampule. Use with method AK101 for unleaded regular gasoline at $100-500 \, \mu g/L$ after dilution.

Alaska DRO in Water

 CRM
 QR

 Cat. #647
 Cat. #475QR

One 2 mL flame-sealed ampule. Use with method AK102 for #2 Diesel Fuel at $800-2300~\mu g/L$ after dilution.

Alaska BTEX in Water

 CRM
 QR

 Cat. #646
 Cat. #474QR

One 2 mL flame-sealed ampule. Use with method AK101 for all BTEX analytes at 5–30 $\mu g/L$ after dilution.

Alaska UST in Soil

Alaska GRO in Soil

 CRM
 QR

 Cat. #635
 Cat. #469QR

One 20 mL flame-sealed ampule with 10 g of soil and 10 mL of methanol with unleaded regular gasoline at 30–1500 mg/kg. Use with method AK101.

Alaska DRO in Soil

 CRM
 QR

 Cat. #637
 Cat. #471QR

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel Fuel at 30–1500 mg/kg. Use with method AK102.

Alaska RRO in Soil

CRMCat. #638

Cat. #472QR

One flame-sealed ampule with 20 g of soil with Residual Range Organic fuels at 150–2000 mg/kg. Use with method AK103.

Alaska BTEX in Soil

 CRM
 QR

 Cat. #636
 Cat. #470QR

One 2 mL flame-sealed ampule along with clean soil matrix for spiking. Use with method AK101 for all BTEX analytes at $5-100\ mg/kg$ after spiking.

Arizona UST in Soil

Arizona TPH in Soil

CRM Cat. #798 PT Cat. #488

Q

QR Cat. #798OR

One ready-to-use flame-sealed ampule with 30 g of soil with Oil Range Organics and #2 Diesel Fuel. Use with method 8015AZ for TPH in the range 300–400 mg/kg. Also includes two carbon ranges.

Texas TPH in Water

All Texas TPH PT standards are designed for use with TNRCC 1005 method. The standards meet the requirements of all states that accredit for these methods including Texas, Louisiana, and Oklahoma.

Texas Low-Level Fuels (TPH) in Water

CRM Cat. #794

PT Cat. #476 Q

QR Cat. #794QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains unleaded regular gasoline and #2 Diesel Fuel resulting in TPH in the range 5-10 mg/L.

Texas High-Level Fuels (TPH) in Water

CRM Cat. #795

Cat. #477

Q

QR Cat. #795QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains unleaded regular gasoline and #2 Diesel Fuel resulting in TPH in the range 20–100 mg/L.

Texas TPH in Soil

Texas Low-Level Fuels (TPH) in Soil

CRM Cat. #796

Cat. #478

Q

QR Cat. #796QR

One ready-to-use flame-sealed ampule with 20 g of soil with unleaded gasoline and #2 Diesel Fuel for TPH in the range 50–100 mg/kg.

Texas High-Level Fuels (TPH) in Soil

CRM Cat. #797 PT Cat. #479 Q

QR Cat. #797QR

One ready-to-use flame-sealed ampule with 20 g of soil with unleaded gasoline and #2 Diesel Fuel for TPH in the range 1000–20,000 mg/kg.

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

All Waters ERA UST PTs open quarterly (Q) unless otherwise noted. Quarterly months are January, April, July, and October.

Wisconsin GRO/PVOC/DRO Method UST

All Wisconsin UST PT standards are designed for use with Wisconsin GRO/PVOC or DRO Methods. The standards meet the requirements of all states that accredit for these methods including Wisconsin and Minnesota.

Wisconsin Gasoline Range Organics (GRO/PVOC) in Water

CRM Cat. #773 **PT** Cat. #649

QR Cat. #773OR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Includes ten gasoline range synthetic organic compounds as defined by Wisconsin. Use with Wisconsin GRO/PVOC Method.

Wisconsin Diesel Range Organics (DRO) in Water

CRM Cat. #772

PT Cat. #648

QR Cat. #772QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Includes ten diesel range synthetic organic compounds in the range 200–600 $\mu g/L.$ Use with the Wisconsin DRO Method.

Washington HEM/SGT-HEM Method UST

The Washington UST PT standard is designed for use with EPA Method 1664 for HEM/SGT-HEM.

Washington HEM/SGT-HEM

CRM Cat. #519

Cat. #489

QR Cat. #519QR

One 5 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA Method 1664 to measure HEM/SGT-HEM at $5-100\ mg/L$.

New Jersey EPH

The New Jersey EPH in Soil standard is designed for use with the NJ Extractable Petroleum Hydrocarbons Method.

New Jersey EPH in Soil

CRM Cat. #564 PT Cat. #464

QR Cat. #564QR

One flame-sealed ampule with 20 g soil containing EPH in the range of 300-3000 mg/kg.

B The NJ EPH in Soil PT studies open in April and October.

Massachusetts Hydrocarbons in Water

All Massachusetts UST PT standards are designed for use with Massachusetts Volatile Petroleum Hydrocarbon or Extractable Petroleum Hydrocarbon Methods. The standards meet the requirements of all states that accredit for these methods including Massachusetts, North Carolina, and Washington when reporting the Massachusetts carbon ranges.

Massachusetts VPH in Water

CRM Cat. #566 PT Cat. #481

QR Cat. #566QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains volatile petroleum hydrocarbon fuels (VPH) in the range 400–4000 µg/L. Use with the Massachusetts Volatile Petroleum Hydrocarbon Method for multiple carbon ranges, BTEX compounds and MTBE.

Massachusetts EPH in Water

CRM Cat. #567 PT Cat. #482 Q

QR Cat. #567QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Contains extractable petroleum hydrocarbon fuels (EPH) in the range 800–6000 $\mu g/L$. Use with the Massachusetts Extractable Petroleum Hydrocarbon Method for multiple carbon ranges and PAH compounds.

Massachusetts Hydrocarbons in Soil

Massachusetts VPH in Soil

CRM Cat. #568

Cat. #483

Q

QR Cat. #568OR

One flame-sealed ampule with 20 g soil with VPH fuels. Contains volatile petroleum hydrocarbon fuels (VPH) in the range 100–2000 mg/kg. Use with the Massachusetts Volatile Petroleum Hydrocarbon Method for multiple carbon ranges, BTEX compounds and MTBE.

Massachusetts EPH in Soil

CRM Cat. #569

Cat. #

Q

QR Cat. #569QR

One flame-sealed ampule with 20 g soil with EPH fuels. Contains extractable petroleum hydrocarbon fuels (EPH) in the range 300–3000 mg/kg. Use with the Massachusetts Extractable Petroleum Hydrocarbon Method for multiple carbon ranges and PAH compounds.

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

RM - Reference Material

All Waters ERA UST PTs open quarterly (Q) unless otherwise noted. Quarterly months are January, April, July, and October.

WE FOCUS ON QUALITY AND SERVICE, SO YOU CAN FOCUS ON YOUR BUSINESS!

Unmatched Technical Expertise

As your Partner in Quality, our goal is to help you maintain successful PT performance, solve routine analysis challenges, and improve corrective actions. Whether it's organic and/or inorganic chemistry, microbiology, analytical instrumentation or methods, our experts are ready to help you with:

- Method interpretations
- Prep and analytical questions
- Instrumentation troubleshooting
- Quality control issues
- Calibration issues

World-Class Customer Service

Our customer service team understands that you are faced with a myriad of requirements to maintain your laboratory accreditation. Each of our representatives has helped solve questions from customers with the same types of challenges. Your dedicated customer service representative has the experience and knowledge to help you through every step of the process.

For more information, contact our customer service team at 800.372.0122 / +1.303.431.8454. or email at info@eraqc.com.

AIR & EMISSIONS

Matrices consisting of organic, inorganic, and particulate matter for testing emissions and ambient air. Standards are designed to meet regulations of the United States Environmental Protection Clean Air Act and may be used to satisfy PT requirements worldwide.

Air & Emissions PT Schedule

2020

	Scheme#	Opens	Closes
Q	AE 51	Jan 27	Mar 12
Q	AE 52	Apr 27	Jun 11
Q	AE 53	Jul 27	Sep 10
Q	AE 54	Oct 23	Dec 7

2021

	Scheme#	Opens	Closes
Q	AE 55	Jan 29	Mar 15
Q	AE 56	Apr 26	Jun 10
Q	AE 57	Jul 30	Sep 13
Q	AE 58	Oct 29	Dec 13

Schedule subject to change – see Waters ERA's website at www.eraqc.com

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

PT: A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

QR: Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

Contents

Description	CRM/ RM	PT	QR	Page
Aldehydes and Ketones on Sorbent	1114	1014 Q	1114QR	55
Ammonia in Impinger Solution	1145	1045 Q	1145QR	57
Chromium on Filter Paper	1131	1031 Q	1131QR	56
Fluoride in Impinger Solution	1141	1041 Q	1141QR	57
Hexavalent Chromium in Impinger Solution	1132	1032 Q	1132QR	56
Hydrogen Halides & Halogens in Impinger Solution	1140	1040 Q	1140QR	57
Lead in Impinger Solution	1130	1030 Q	1130QR	56
Lead on Filter Paper	1129	1029 Q	1129QR	56
Mercury in Impinger Solution	1128	1028 Q	1128QR	56
Mercury on Filter Paper	1127	1027 Q	1127QR	56
Metals on Filter Paper	1125	1025 Q	1125QR	56
Metas in Impinger Solution	1126	1026 Q	1126QR	56
Nitrogen Oxide in Impinger Solution	1142	1042 Q	1142QR	57
Organochlorine Pesticides on Polyurethane Foam	1111	1011 Q	1111QR	55
PAHs on Polyurethane Foam	1113	1013 Q	1113QR	55
Particulate Matter in Impinger Solution	1151	1051 Q	1151QR	57
Particulate Matter on Filter Paper	1150	1050 Q	1150QR	57
PCBs on Polyurethane Foam	1112	1012 Q	1112QR	55
Semivolatiles on Polyurethane Foam	1110	1010 Q	1110QR	55
Sulfur Dioxide in Impinger Solution	1143	1043 Q	1143QR	57
Sulfuric Acid & Sulfur Dioxide in Impinger Solution	1144	1044 Q	1144QR	57
Volatiles in Gas Cylinder	1100	1000 Q	1100QR	54
Volatiles on Sorbent	1101	1001 Q	1101QR	54

All Waters ERA Air & Emissions PTs open quarterly. Quarterly months are January, April, July, and October.

Volatiles

Volatiles in Gas Cylinder*

RM** Cat. #1100

Cat. #1000

Q

QR Cat. #1100QR

One pressurized gas cylinder containing 87 L of gas at 1500 psig (103 bar) for use with EPA methods TO-14, TO-15, or other applicable methods. Contains at least 10 analytes, randomly selected from the list below, at 2-50 ppbv (4-100 ppbv) for Total Xylenes.

Acetone	1,
Benzene	1,
Benzy chloride	1,
Bromodichloromethane	С
Bromoform	tr
Bromomethane	1,
1,3-Butadiene	С
2-Butanone (MEK)	tr
Methyl tert-butyl ether (MTBE)	1,
Carbon disulfide	(1
Carbon tetrachloride	E
Chlorobenzene	E
Chlorodibromomethane	р
Chloroethane	n
Chloroform	Н
Chloromethane	n
Cyclohexane	2
1,2-Dibromoethane (EDB)	ls
1,2-Dichlorobenzene	Λ
1,3-Dichlorobenzene	Λ
1,4-Dichlorobenzene	4
Dichlorodifluoromethane	Λ
(Freon 12)	Р

1,1-Dichloroethane
1,2-Dichloroethylene
cis-1,2-Dichloroethylene
trans-1,2-Dichloroethylene
1,2-Dichloropropane
cis-1,3-Dichloropropylene
trans-1,3-Dichloropropylene
1,2-Dichloropropylene

.2-Dichlorotetrafluoroethane Freon 114) Ethyl acetate Ethylbenzene o-Ethyltoluene n-Heptane Hexachlorobutadiene n-Hexane 2-Hexanone sopropyl alcohol m&p-Xvlene Methylene chloride o-Xylene Methyl methacrylate 4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether (MTBE) Propylene

1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene Trichloroethene 1,2,4-Trichlorobenzene 1.1.1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane (Freon 11) Trichlorotrifluoromethane (Freon 113) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl bromide Vinyl chloride Xylenes, total

*Volatiles in Gas Cylinder ships as dangerous goods. ** Reference Material (RM)

Volatiles on Sorbent

CRM Cat. #1101

PT Cat. #1001 Q

QR Cat. #1101QR

Methylene chloride

One 2 mL flame-sealed ampule for spiking client-specific sorbent. Use with EPA Methods TO-17, 0030, 0031, or other applicable methods. Contains at least 24 analytes, randomly selected from the list below, at 50–2000 ng/sample (200–3000 ng/sample for Total Xylenes) after preparation.

1,1-Dichloropropene

Acetonitrile Acrolein Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1.3-Dichloropropane 2,2-Dichloropropane

1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) Dibromomethane 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (Freon 12) 1.1-Dichloroethane 1,2-Dichloroethane 1.1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene Hexachloroethane 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether (MTBE)

4-Methyl-2-pentanone (MIBK) Naphthalene Nitrobenzene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene 1.2.3-Trichlorobenzene 1,2,4-Trichlorobenzene 1.1.1-Trichloroethane 1,1,2-Trichloroethane Trichloroethlyene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride Xylenes, total m&p-Xylene o-Xylene

Semivolatiles

Semivolatiles on Polyurethane Foam

CRM Cat. #1110

Cat. #1010

0

OR Cat. #1110QR

Two 2 mL flame-sealed ampules plus one polyurethane foam. Use with EPA Method 0010, or other applicable methods. Contains at least 42 analytes, randomly selected from the list below, at 10-225 µg/sample (200-1000 µg/sample for Benzidine) after preparation.

1.3-Dichlorobenzene Acenaphthene Acenaphthylene 1.4-Dichlorobenzene Aniline 3.3'-Dichlorobenzidine Diethyl phthalate Anthracene **Benzidine** Dimethyl phthalate Benzo(a)anthracene 2,4-Dinitrotoluene Benzo(b)fluoranthene 2.6-Dinitrotoluene Benzo(k)fluoranthene Di-n-octyl phthalate Benzo(a.h.i)pervlene Fluoranthene Benzo(a)pyrene Fluorene Benzyl alcohol Hexachlorobenzene 4-Bromophenyl phenyl ether Hexachlorobutadiene Butyl benzyl phthalate Hexachlorocyclopentadiene Carbazole Hexachloroethane 4-Chloroaniline Indeno(1,2,3-cd)pyrene Bis(2-chloroethoxy)methane Isophorone 2-Methylnaphthalene Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate Naphthalene 1-Chloronaphthalene 2-Nitroaniline 2-Chloronaphthalene 3-Nitroaniline 4-Chlorophenyl phenyl ether 4-Nitroaniline Chrysene Nitrobenzene Dibenz(a,h)anthracene N-Nitrosodiethylamine Dibenzofuran N-Nitrosodimethylamine Di-n-butyl phthalate

(NDMA)

selected from the list below, at 1-20 µg/sample after preparation.

4.4'-DDD

4,4'-DDE

4.4'-DDT

Dieldrin

Endosulfan I

Endosulfan II

Endosulfan sulfate

N-Nitrosodiphenylamine

Organochlorine Pesticides on Polyurethane Foam

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA Methods

TO-04A, TO-10A, or other applicable methods. Contains at least 16 analytes, randomly

Cat. #1011

Q

Endrin

Endrin aldehyde

Heptachlor epoxide (beta)

Endrin ketone

Methoxychlor

Heptachlor

1,2-Dichlorobenzene

CRM

Cat. #1111

Aldrin

alpha-BHC

beta-BHC

delta-BHC

gamma-BHC (Lindane)

alpha-Chlordane

gamma-Chlordane

N-Nitroso-di-n-propylamine 2,2'-Oxybis(1-chloropropane) Pentachlorobenzene Phenanthrene Pyrene Pyridine o-Toluidine

1,2,4,5-Tetrachlorobenzene 1.2.4-Trichlorobenzene Benzoic Acid 4-Chloro-3-methylphenol

2-Chlorophenol 2,4-Dichlorophenol 2,6-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol

2-Methylphenol (o-Cresol) 4-Methylphenol (p-Cresol) 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol

2,3,4,6-Tetrachlorophenol 2.4.5-Trichlorophenol 2,4,6-Trichlorophenol

OR

Cat. #1111QR

PCBs on Polyurethane Foam

CRM Cat. #1112

Cat. #1012

Q

OR Cat. #1112QR

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA Methods TO-04A, TO-10A, or other applicable methods. Contains one aroclor, randomly selected from the list below, at 2-10 µg/sample after preparation.

Aroclor 1016 Aroclor 1242 Aroclor 1221 Aroclor 1248 Aroclor 1232 Aroclor 1254 Aroclor 1260

PAHs on Polyurethane Foam

CRM Cat. #1113

Cat. #1013

0

QR Cat. #1113OR

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA Method TO-13A, or other applicable methods. Contains at least 13 analytes, randomly selected from the list below, at 10-200 µg/sample after preparation.

Acenaphthene Benzo(g,h,i)perylene Indeno(1.2.3-cd)pyrene Acenaphthylene Benzo(a)pyrene 1-Methylnaphthalene Chrysene 2-Methylnaphthalene Anthracene Benzo(a)anthracene Dibenz(a,h)anthracene Naphthalene Benzo(b)fluoranthene Fluoranthene Phenanthrene Benzo(k)fluoranthene Fluorene Pyrene

Aldehydes & Ketones on Sorbent

CRM Cat. #1114

Cat. #1014

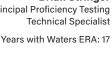
Q

QR Cat. #1114QR

One 2 mL flame-sealed ampule to be spiked onto sorbent. Use with EPA Method TO-11A, or other applicable methods. Contains at least four analytes, randomly selected from the list below, at 0.5-10 µg/sample after preparation.

Acetaldehyde Acetone Benzaldehyde 2-Butanone (MEK) Butyraldehyde (Butanal)

Crotonaldehyde 2,5-Dimethylbenzaldehyde Formaldehyde Hexaldehvde (Hexanal) Isovaleraldehyde


Propionaldehyde (Propanal) o-Tolualdehvde m-Tolualdehyde n-Tolualdehyde Valeraldehyde (Pentanal)

CRM - Certified Reference Material

PT - Proficiency Testing OR - QuiK Response RM - Reference Material

Q All Waters ERA Air & Emissions PTs open quarterly. Quarterly months are January, April, July, and October.

Brian Stringer Principal Proficiency Testing

Debby Updyke Senior Proficiency Testing **Technical Specialist** Years with Waters ERA: 18

Metals

Metals on Filter Paper

CRM Cat. #1125

PT Cat. #1025 Q

QR Cat. #1125QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter ready for use with EPA Method 29 or other applicable methods.

Antimony	25-250 µg/filter
Arsenic	20-250 μg/filter
Barium	20-250 μg/filter
Beryllium	10-250 μg/filter
Cadmium	10-250 μg/filter
Chromium	15-250 μg/filter
CODAIL	IU-230 uu/ IIILEI
Copper	10-250 μg/filter
Copper	20-350 μg/filter
Manganese	10-250 μg/filter
Nickel	20-250 μg/filter
Phosphorus	10-250 μg/filter
Selenium	20-250 μg/filter
Silver	30-250 µg/filter
Thallium	30-250 μg/filter
Zinc	20-250 μg/filter

Metals in Impinger Solution

CRM Cat. #1126 PT Cat. #1026 Q

QR Cat. #1126QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Method 29, or other applicable methods.

Antimony0.25–20 μg/mL
Arsenic0.2-20 μg/mL
Barium0.15-25 μg/mL
Beryllium0.05-20 μg/mL
Cadmium0.1-20 μg/mL
Chromium0.2-20 μg/mL
Cobalt0.1-25 μg/mL
Copper0.2-20 µg/mL
Lead0.2-20 μg/mL
Manganese0.1-20 μg/mL
Nickel0.15-30 μg/mL
Phosphorus
Selenium
Silver0.5-20 μg/mL
Thallium0.15-25 μg/mL
Antimony 0.25-20 μg/mL Arsenic 0.2-20 μg/mL Barium 0.15-25 μg/mL Beryllium 0.05-20 μg/mL Cadmium 0.1-20 μg/mL Chromium 0.2-20 μg/mL Cobalt 0.1-25 μg/mL Copper 0.2-20 μg/mL Lead 0.1-20 μg/mL Manganese 0.1-20 μg/mL Nickel 0.15-30 μg/mL Phosphorus 0.15-25 μg/mL Selenium 0.15-25 μg/mL Silver 0.5-20 μg/mL Thallium 0.15-25 μg/mL Zinc 0.15-25 μg/mL

Mercury on Filter Paper

CRM Cat. #1127 PT Cat. #1027 Q

QR Cat. #1127OR

One 2 mL flame-sealed ampule containing approximately 2 mL of standard concentrate and a 50 mm polystyrene petri dish containing a single 47 mm glass fiber filter. Sample is ready for use with EPA Method 29, or other applicable methods.

Mercury.....1–75 μ g/filter

Mercury in Impinger Solution

CRM Cat. #1128 PT Cat. #1028 Q

QR Cat. #1128QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Methods 29, 101a, or other applicable methods.

Mercury.......0.9-200 ng/mL

Lead on Filter Paper

CRM Cat. #1129 PT Cat. #1029 Q

QR Cat. #1129QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter spiked with lead ready-for-use with EPA Method 12 or other applicable methods.

Lead......20-350 μg/filter

Lead in Impinger Solution

CRM Cat. #1130 PT Cat. #1030 Q

QR Cat. #1130QR

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA Method 12, or other applicable methods.

Lead......0.2-120 μg/mL

Chromium on Filter Paper

CRM Cat. #1131

Cat. #1031

Q

QR Cat. #1131QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm fiber film filter for use with CARB Method 425, or other applicable methods.

Total chromium 1–20 µg/filter
Hexavalent chromium 1–20 µg/filter

Hexavalent Chromium in Impinger Solution

CRM Cat. #1132 PT Cat. #1032 Q

QR Cat. #1132QR

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA Method 0061/7199, or other applicable methods.

Hexavalent chromium......45-880 µg/l

Inorganics

Hydrogen Halides & Halogens in Impinger Solution

CRM Cat. #1140

P1 Cat. #1040 Q

QR Cat. #1140QR

Two impinger solution samples packaged in 15 mL screw-top vials containing approximately 14 mL of standard concentrate for use with EPA Methods 26, 26a, or other applicable methods.

Total halides	15-1500 mg/L
Total halogens	10-200 mg/L
Hydrogen chloride	5-500 mg/L
Hydrogen fluoride	5-500 mg/L
Hydrogen bromide	5-500 mg/L
Bromine	5-100 mg/L
Chlorine	5-100 mg/L

Fluoride in Impinger Solution

CRM Cat. #1141

PT Cat. #1041 Q

QR Cat. #1141QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Methods 13a, 13b, 14, or other applicable methods.

Fluoride......1-50 mg/dscm

Nitrogen Oxide in Impinger Solution

CRM Cat. #1142 PT Cat. #1042 Q

QR Cat. #1142QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Method 7, or other applicable methods.

Oxides of nitrogen (NOx)......100-2000 mg/dscm

Sulfur Dioxide in Impinger Solution

CRM Cat. #1143

PT Cat. #1043 Q

QR Cat. #1143QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA Method 6 and Method 8, or other applicable methods.

Sulfur dioxide50-2000 mg/dscm

Sulfuric Acid & Sulfur Dioxide in Impinger Solution

CRM Cat. #1144

Cat. #1044

Q

QR Cat. #1144QR

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA Method 8, or other applicable methods.

Sulfuric acid......5-150 mg/dscm

Ammonia in Impinger Solution

CRM Cat. #1145

PT Cat. #1045 Q

QR Cat. #1145QR

One impinger solution sample packaged in a 15 mL screw-top vial containing approximately 14 mL of standard concentrate for use with EPA CTM 027, or other applicable methods.

Ammonium......0.1-10 mg/L

Particulate Matter on Filter Paper

CRM Cat. #1150

PT Cat. #1050 Q

QR Cat. #1150QR

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter ready for use with EPA Methods 5, 5A, 5B, 5D, 5F, or other applicable methods.

Particulate matter......50-600 mg/filter

Particulate Matter in Impinger Solution

CRM Cat. #1151

Cat. #1051

Q

QR Cat. #1151QR

One impinger solution sample packaged in a 250 mL polyethylene bottle containing approximately 250 mL of standard ready for use with EPA Methods 5, 5A, 5B, 5D, 5F, or other applicable methods.

Particulate matter......140-675 mg/L

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

• All Waters ERA Air & Emissions PTs open quarterly. Quarterly months are January, April, July, and October.

Tom WideraTechnical Manager
Years with Waters ERA: 20

RADIOCHEMISTRY

Matrices in soil, vegetation, air filters, and water for monitoring of radiochemicals.

Radiochemistry PT Schedule 2020

W	Scheme #	Opens	Closes
Q	RAD 120	Jan 6	Feb 20
Q	RAD 121	Apr 6	May 21
Q	RAD 122	Jul 6	Aug 20
0	RAD 123	Oct 2	Nov 16

MRAD PT Schedule 2020

Scheme#	Opens	Closes
MRAD 32	Mar 16	May 15
MRAD 33	Sep 14	Nov 13

2021

	Scheme #	Opens	Closes
Q	RAD 124	Jan 11	Feb 25
Q	RAD 125	Apr 5	May 20
Q	RAD 126	Jul 12	Aug 26
Q	RAD 127	Oct 8	Nov 22

2021

Scheme#	Opens	Closes
MRAD 34	Mar 22	May 21
MRAD 35	Sep 20	Nov 19
	1 1 1 1	

2 schemes per year - open for 60 days

Schedules are subject to change - see Waters ERA's website at www.eraqc.com

Contents

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

PT: A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

QR: Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days. QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants – chemical analytical labs.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

Description	CRM/ RM	PT	QR	Page
Air Filter Gross Alpha/Beta	607	801 💌	607QR	62
Air Filter Radionuclides	606	800 🛎	606QR	62
Gamma Emitters	758	808 Q	758QR	60
Gross Alpha/Beta	759	809 Q	759QR	60
lodine-131	750	810 Q	750QR	60
Naturals	751	811 Q	751QR	60
Radchem Lab Control & Matrix Spiking Solutions (LCS/MS)				61
Soil Radionuclides	608	802 *	608QR	62
Strontium-89/90	757	807 Q	757QR	60
Tritium	752	812 Q	752QR	60
Vegetation Radionuclides	609	803 *	609QR	62
Water Gross Alpha/Beta	615	805 *	615QR	63
Water Radionuclides	617	804 *	617QR	63
Water Tritium	616	806 *	616QR	63

All Waters ERA WS Radchem PTs open quarterly. Quarterly months are January, April, July, and October.

^{*} All Waters ERA MRAD PTs open in March and September.

WS Radchem

All Radchem standards are provided as convenient, easy-to-prepare concentrates except for tritium, which is provided as a whole-volume sample.

Gamma Emitters

CRM PT QR Cat. #758 Cat. #808

One 12 mL screw-top vial yields up to 2 liters after dilution.

Barium-133	10-100 pCi/L
Cesium-134	10-100 pCi/L
Cesium-137	20-240 pCi/L
Cobalt-60	10-120 pCi/L
Zinc-65	30-360 pCi/L

Gross Alpha/Beta

CRM PT QR Cat. #759 Cat. #809 Cat. #759QR

One 12 mL screw-top vial yields up to 1 liter after dilution.

Gross alpha as thorium-230.......7-75 pCi/L
Gross beta as cesium-137......8-75 pCi/L

Naturals

CRM	PT	Q	QR
Cat. #751	Cat. #811	Q	Cat. #751QR

One 12 mL screw-top vial yields up to 8 liters after dilution.

Radium-2261-20 pCi/L
Radium-2282-20 pCi/L
Uranium (Nat)2-70 pCi/L
Uranium (Nat) mass3-104 µg/L

Tritium

 CRM
 PT
 QR

 Cat. #752
 Cat. #812
 Q

One 250 mL whole-volume bottle is ready to analyze as received. Includes tritium at 1000–24000 pCi/L.

Iodine-131

004					
CHM Cat. #750 Cat. #810 Q Cat. #750QR	CRM Cat. #750	PT Cat. #810	Q	<mark>QR</mark> Cat. #750QR	

One 12 mL screw-top vial yields up to 2 liters after dilution. Contains iodine-131 within the range 3–30 pCi/L. Due to short half-life, CRMs, PTs, and QRs are available only during January, April, July, and October.

Strontium-89/90

Cat. #757 Cat. #807 Cat. #757QR	CRM Cat. #757	PT Cat. #807	Q	<mark>QR</mark> Cat. #757QR
---------------------------------	-------------------------	------------------------	---	--------------------------------

One 12 mL screw-top vial yields up to 2 liters after dilution.

Strontium-8910-7	0 pCi/L
Strontium-903-4	5 pCi/L

CRM - Certified Reference Material PT - Proficiency Testing QR - QuiK Response

All Waters ERA WS Radchem PTs open quarterly. Quarterly months are January, April, July, and October.

Radchem Lab Control & Matrix Spiking (LCS/MS)

Radiochemistry LCS/MS standards are prepared according to your specifications at activity levels that enable you to directly fortify your batch laboratory control and matrix spike QC samples. These single-use spiking standards are verified, conveniently packaged in 2–20 mL glass vials, and very economical.

The direct benefits:

- Easy-to-use LCS/MS spiking standards are ready-to-use no dilutions are required.
- Reliable and consistent Eliminate the possibility of errors from the contamination or repeated multiple dilutions of your primary stock standards.
- Independently verified LCS/MS standards are analytically verified and traced to NIST SRMs where available.
- Save money You no longer need to pay for microcuries of activity when you only need picocuries.
 You also eliminate the cost of activity loss for short-lived isotopes.
- Reduce analytical cost You no longer need to spend valuable instrument time re-verifying standard stability.
 Order what you expect to use on a quarterly or annual basis we'll do the verification.

The process is easy:

- 1. Select from any of the following carrier-free, single radionuclide standards.
- 2. Choose an activity up to the maximum listed in the table below.
- 3. Choose a convenient volume: 2 to 20 mL glass vials available.
- 4. For labs that analyze samples with more elevated activities, call for standard availability and pricing.

Single Radionuclide Spiking Standards

Cat.#	Radionuclide	Maximum Activity/Vial
AM241	Americium-241	40 pCi
BA133	Barium-133	400 pCi
CS134	Cesium-134	200 pCi
CS137	Cesium-137	400 pCi
CO60	Cobalt-60	200 pCi
GAB	Gross alpha/beta	30/40 pCi
GA	Gross alpha (Th-230)	30 pCi
GB	Gross beta (Cs-137)	40 pCi
PU238	Plutonium-238	40 pCi
PU239	Plutonium-239	40 pCi
RA226	Radium-226	20 pCi
RA228	Radium-228	Call
SR89	Strontium-89	200 pCi
SR90	Strontium-90	40 pCi
Н3	Tritium	2000 pCi
UNAT	Uranium, natural	40 pCi
ZN65	Zinc-65	600 pCi

MRAD Solids

Soil Radionuclides

RM Cat. #608 PT Cat. #802

QR Cat. #608QR

One 500 cc standard includes the alpha, beta, and gamma emitting radionuclides listed below.

Actinium-228	500-5000 pCi/kg
Americium-241	50-2000 pCi/kg
Bismuth-212	500-5000 pCi/kg
Bismuth-214	500-5000 pCi/kg
Cesium-134	1000–10,000 pCi/kg
Cesium-137	1000–10,000 pCi/kg
Cobalt-60	1000–10,000 pCi/kg
Lead-212	500-5000 pCi/kg
Lead-214	500-5000 pCi/kg
Plutonium-238	50-2000 pCi/kg
Plutonium-239	50-2000 pCi/kg
Potassium-40	5000-50,000 pCi/kg
Strontium-90	500-10,000 pCi/kg
Thorium-234	500-5000 pCi/kg
Uranium-234	500-5000 pCi/kg
Uranium-238	500-5000 pCi/kg
Uranium (Nat)	1000-10,000 pCi/kg
Actinium-228	1500–15,000 μg/kg
Zinc-65	1000-10,00 pCi/kg

Vegetation Radionuclides

RM Cat. #609

PT Cat. #803

QR Cat. #609QR

One 500 cc standard includes the alpha, beta, and gamma emitting radionuclides

Americium-241	50-5000 pCi/kg
Cesium-134	
Cesium-137	300-3000 pCi/kg
Cobalt-60	300-3000 pCi/kg
Curium-244	
Plutonium-238	50-5000 pCi/kg
Plutonium-239	50-5000 pCi/kg
Potassium-40	
Strontium-90	500-10,000 pCi/kg
Uranium-234	50-5000 pCi/kg
Uranium-238	50-5000 pCi/kg
Uranium (Nat)	100-10,000 pCi/kg
Uranium (Nat) mass	
Zinc-65	300-3000 pCi/kg

MRAD Air Filter

Air Filter Radionuclides

RM Cat. #606 PT Cat. #800

QR Cat. #606QR

One 47 mm diameter glass fiber filter contains the alpha, beta, and gamma emitting radionuclides listed below.

Americium-241	2-80 pCi/filter
Cesium-134	50-1500 pCi/filter
Cesium-137	50-1500 pCi/filter
Cobalt-60	50-1500 pCi/filter
Iron-55	50-1500 pCi/filter
Plutonium-238	2-80 pCi/filter
Plutonium-239	2-80 pCi/filter
Strontium-90	5-200 pCi/filter
Uranium-234	2-80 pCi/filter
Uranium-238	2-80 pCi/filter
Uranium (Nat)	4-160 pCi/filter
Uranium (Nat) mass	6-240 μg/filter
Zinc-65	50-1500 pCi/filter

Air Filter Gross Alpha/Beta

RM Cat. #607

PT Cat. #801

QR Cat. #607QR

One acrylic treated 47 mm diameter glass fiber filter contains the radionuclides listed below.

Gross alpha as thorium-2305	5-100 pCi/filter
Gross beta as cesium-137	5-100 pCi/filter

Leo Muñoz Shipping Team Lead Years with Waters ERA: 11

MRAD Water

Water Radionuclides

RM Cat. #617 PT Cat. #804

QR Cat. #617QR

One 12 mL screw-top vial yields up to 2 liters after dilution. Includes the alpha, beta, and gamma emitting radionuclides listed below.

Americium-241	
Cesium-134	100-3000 pCi/L
Cesium-137	100-3000 pCi/L
Cobalt-60	
Iron-55	100-3000 pCi/L
Plutonium-238	10-200 pCi/L
Plutonium-239	10-200 pCi/L
Strontium-90	50-1000 pCi/L
Uranium-234	10-200 pCi/L
Uranium-238	10-200 pCi/L
Uranium (Nat)	20-400 pCi/L
Uranium (Nat) mass	30-600 μg/L
Zinc-65	100-3000 pCi/L

Water Gross Alpha/Beta

RM Cat. #615 PT Cat. #805

QR Cat. #615QR

One 12 mL screw-top vial yields up to 2 liters after dilution. Includes the radionuclides below.

Gross alpha as thorium-2301	10-200 pCi/L
Gross beta as cesium-1371	10-200 pCi/L

Water Tritium

RM Cat. #616 PT Cat. #806

QR Cat. #616QR

One 125 mL whole-volume bottle is ready to analyze as received.

Tritium3000-30,000 pCi/L

CRM - Certified Reference Material

PT - Proficiency Testing

QR - QuiK Response

* All Waters ERA MRAD PTs open in March and September.

LOW-LEVEL CRMs

Synthetic drinking and wastewater matrices with low concentrations of analytes for testing water supply, drinking water, ground water, water pollution, or wastewater.

Save time diluting your standards or spending numerous hours producing them yourself with our low-level Certified Reference Materials (CRMs).

Our line of low-level CRMs are optimal for:

- Method development and validation
- System checks
- Evaluating limits of quantitation
- Minimum detection limit studies
- Detection verification
- Many other uses

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

Contents

Description	CRM	Page
Chlorine	1358	66
Color	1353	66
Common Inorganics	1249	66
Common Inorganics in Hard Water	1346	66
Common Inorganics in Soft Water	1347	66
Complex Nutrients in Hard Water	1241	68
Cyanide	1345	66
Demand —	1354	66
Demand —	1242	66
Hexavalent Chromium	1248	67
High Solids	1355	67
Mercury	1341	67
Metals	1244	67
Ourse selderine Destinides	1253	68
Organochlorine Pesticides –	1374	68
Organophosphorus Pesticides	1256	68
PAHs	1254	69
PCB Congeners -	1373	69
	1255	69
Semivolatiles	1372	69
Simple Nutrients	1240	68
Simple Nutrients in Hard Water	1348	68
Simple Nutrients in Soft Water	1349	68
Solids Concentrate	1243	67
Total Phenolics (4-AAP)	1250	67
Tripping Huggs and Arid Harbirita	1375	69
riazines, Urons, and Acid Herbicides —	1257	69
Trihalomethanes	1371	69
Volatiles	1370	69

Inorganics

Chlorine

CRM Cat. #1358

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Total chlorine	75-500 μg/L
Free chlorine	75-500 μg/L

Color

CRM

Cat. #1353

One 125 mL whole-volume bottle sample is ready to be analyzed.

Color......5-25 pc units

Common Inorganics

CRM

Cat. #1249

One liter poly bottle whole-volume sample is ready to be analyzed.

Alkalinity	20-120 mg/L
Calcium	2-50 mg/L
Chloride	
Conductivity	80–1,000 μmhos/cm
Fluoride	0.25-5 mg/L
Magnesium	1–25 mg/L
pH	5-10 units
Potassium	2-50 ma/L
Sodium	5-100 mg/L
Sulfate	
Total dissolved solids	60-750 mg/L
Total hardness	9-250 mg/L

Common Inorganics in Hard Water

One liter poly bottle whole-volume sample is ready to be analyzed.

CRM

Cat. #1346

Common Inorganics in Soft Water

CRM Cat. #1347

A 1 liter poly bottle whole-volume sample is ready to be analyzed.

Alkalinity20-100 mg/L	A
Calcium2-50 mg/L	
Chloride5-50 mg/L	(
Conductivity25-300 µmhos/cm	(
Fluoride	F
Magnesium0.5-5 mg/L	ľ
pH5-10 units	ŗ
Potassium1-10 mg/L	F
Sodium5-50 mg/L	5
Sulfate5-50 mg/L	5
Total dissolved solids20-200 mg/L	1
Total hardness5-75 mg/L	1

Cyanide

CRM

Cat. #1345

One 15 mL screw-cap vial yields up to 2 liters of sample.

Free cyanide5-1	00 μg/L
Total cyanide5-1	00 μg/L

Demand

CRM

Cat. #1354

One 15 mL screw-cap vial yields up to 2 liters of sample.

5-d	lay BOD	2-25 m	ıg/L
CO	D	2-25 m	ıg/L
DO	C	1–10 m	ıg/L
TO	C.	1-10 m	na/I

CRM

Cat. #1242

One 15 mL screw-cap vial spiking concentrate yields up to 2 liters of sample.

5-day BOD	5-75 mg/L
COD	10-150 mg/L
DOC	2-40 mg/L
TOC	2-40 mg/l

Stanley Dunlavy EH & S Engineer

Years with Waters ERA: 19

Inorganics (continued)

High Solids

CRM

Cat. #1355

One 24 mL screw-cap vial with a powder concentrate yields 1 liter of solution.

Solids Concentrate

CRM

Cat. #1243

One 24 mL screw-cap vial concentrate yields up to 1 liter of sample.

Total Phenolics (4-AAP)

CRM

Cat. #1250

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Metals (continued)

Metals

CRM

Cat. #1244

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Aluminum200-4000 μg/L	200-4000 μg/L
Antimony95-900 μg/L	95-900 μg/L
Arsenic70-900 μg/L	70-900 μg/L
Barium100-2500 μg/L	100-2500 μg/L
Beryllium8-900 μg/L	8-900 μg/L
Boron800-2000 μg/L	800-2000 μg/L
Cadmium8-750 μg/L	8-750 μg/L
Chromium, total17–1000 μg/L	17–1000 μg/L
Cobalt28-1000 μg/L	28-1000 μg/L
Copper40-900 μg/L	40-900 μg/L
Iron200-4000 μg/L	200-4000 μg/L
Lead70-3000 μg/L	70-3000 μg/L
Manganese70-4000 μg/L	70-4000 μg/L
Molybdenum60-600 μg/L	60-600 μg/L
Nickel80-3000 μg/L	80-3000 μg/L
Selenium90-2000 μg/L	90-2000 μg/L
Silver26-600 μg/L	26-600 μg/L
Strontium30-300 μg/L	30-300 μg/L
Thallium60-900 μg/L	60-900 μg/L
Vanadium55-2000 μg/L	55-2000 μg/L
Aluminum	100-2000 μg/L

Metals

Hexavalent Chromium

CRM

Cat. #1248

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Hexavalent chromium......5-100 µg/L

Mercury

CRM

Cat. #1341

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Nutrients

Complex Nutrients in Hard Water

CRM Cat. #1241

One 15 mL screw-cap vial spiking concentrate yields up to 2 liters of sample.

Total Kjeldahl nitrogen0.5-5 mg/L
Total nitrogen1–20 mg/L
Total phosphorus0.5-5 mg/L

Simple Nutrients

CRM

Cat. #1240

Two 15 mL screw-cap vials yields up to 2 liters of sample.

Ammonia (N)1–20 mg/L	
Nitrate (NO ₃)0.5–10 mg/L	
Nitrite (NO ₂)	
Total oxidised nitrogen1–15 mg/L	
Soluble reactive phosphorus (P)	

Simple Nutrients in Hard Water

CRM Cat. #1348

Two 15 mL screw-cap vial spiking concentrates and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Ammonium (NH ₄)0.1–1 mg/	/L
Nitrate (NO ₃)3-60 mg/	/L
Nitrite (NO ₂)	/L
Soluble reactive phosphorus (P)	/L
Total oxidised nitrogen (TON) 3-60 mg/	/I

Simple Nutrients in Soft Water

CRM Cat. #1349

Two 15 mL screw-cap vial spiking concentrates and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample.

Ammonium (NH ₄)	I-1 mg/L
Nitrate (NO ₃)3-	60 mg/L
Nitrite (NO ₂)	I-1 mg/L
Soluble reactive phosphorus (P)	-5 mg/L
Total oxidised nitrogen (TON)	60 ma/L

Years with Waters ERA: 26

Organics

4,4'-DDD

Organochlorine Pesticides

CRM Cat. #1374

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 10-150 ng/L (aldrin, dieldrin, heptachlor, and heptachlor epoxide at 2-40 ng/L).

Aldrin	4,4'-DDE	Heptachlor epoxide
alpha-BHC	4,4'-DDT	Hexachlorobenzene
beta-BHC	Dieldrin	Pentachlorobenzene
delta-BHC	Endosulfan I	Trifluralin
gamma-BHC (Lindane)	Endosulfan II	
0.4/ 0.07		

Heptachlor

CRM

Cat. #1253

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 100-2000 ng/L.

Aldrin 4,4'-DDD		Endrin
alpha-BHC	4,4'-DDE	Endrin aldehyde
beta-BHC	4,4'-DDT	Endrin ketone
delta-BHC	Dieldrin	Heptachlor
gamma-BHC (Lindane)	Endosulfan I	Heptachlor epoxide (beta)
alpha-Chlordane	Endosulfan II	Methoxychlor
gamma-Chlordane	Endosulfan sulfate	Pentachlorobenzene

Organophosphorus Pesticides

CRM Cat. #1256

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 100-1500 ng/L.

Azinphos-ethyl	Diazinon
Azinphos-methyl	Dichlorvos
Chlorfenvinphos	Fenitrothion
Chlorpyrifos	Fenthion
Cypermethrin	Malathion

Mevinphos Parathion-ethyl Parathion-methyl

Jennifer Watson **Customer Service Representative** Years with Waters ERA: 9

68

Organics (continued)

PAHs

CRM

Cat. #1254

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 10-250 ng/L.

Acenaphthene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene
Acenaphthylene Benzo(a)pyrene Naphthalene
Anthracene Chrysene Phenanthrene
Benzo(a)anthracene Dibenz(a,h)anthracene Pyrene
Benzo(b)fluoranthene Fluoranthene

Fluorene

PCB Congeners

Benzo(k)fluoranthene

CRM

Cat. #1373

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 5–100 ng/L.

PCB 28 PCB 118 PCB 153 PCB 52 PCB 138 PCB 180 PCB 101

CRM

Cat. #1255

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 100-1500 ng/L.

PCB 28 PCB 118 PCB 180
PCB 52 PCB 138
PCB 101 PCB 153

Semivolatiles

Acenaphthene

CRM

Cat. #1372

Fluorene

Pyrene

Naphthalene

Phenanthrene

Indeno(1,2,3-cd)pyrene

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 2–50 ng/L (benzo(a)pyrene at 1–12 ng/L).

Chrysene

Acenaphthylene Dibenz(a,h)anthracene Anthracene Di-n-butyl phthalate Benzo(a)anthracene Diethyl phthalate Benzo(b)fluoranthene Dimethyl phthalate Benzo(k)fluoranthene Di-n-octyl phthalate Benzo(g,h,i)perylene bis(2-Ethylhexyl)adipate Benzo(a)pyrene bis(2-Ethylhexyl)phthalate Butylbenzylphthalate Fluoranthene

Triazines, Urons, and Acid Herbicides

CRM

Cat. #1375

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 10–150 ng/L.

 2,4-D
 Diuron
 MCPB

 AMPA
 Glyphosate
 MCPP

 Atrazine
 Isoproturon
 Propazine

 Bentazon
 Linuron
 Simazine

 Chlortoluron
 MCPA

CI

CRM Cat. #1257

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 100–1200 ng/L.

2,4-DDiuronMCPBAMPAGlyphosateMCPPAtrazineIsoproturonPropazineBentazoneLinuronSimazineChlortoluronMCPA

Trihalomethanes

CRM Cat. #1371

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 10–100 μ g/L.

Bromodichloromethane Chlorodibromomethane Bromoform Chloroform

Volatiles

CRM

Cat. #1370

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate yields up to 2 liters of sample to be analyzed for the compounds listed below at 0.1–50 $\mu g/L$.

Benzene Ethylbenzene o-Xylene Carbon tetrachloride Methylene chloride m-Xylene Chlorobenzene Styrene p-Xylene 1,2-Dichlorobenzene Tetrachloroethene m+p-Xylene 1.4-Dichlorobenzene Toluene Xylenes, total 1,2,4-Trichlorobenzene 1,2-Dichloroethane

1,2-Dichloroethane 1,2,4-Trichlorobenzei
1,1-Dichloroethylene 1,1,1-Trichloroethane
trans-1,2-Dichloroethylene 1,2-Dichloropropane 1,2,4-Trichloroethane
Trichloroethene 1,2-Dichloropropane Vinyl chloride

CUSTOM STANDARDS Standards manufactured to unique specifications available with a range of analytes, concentrations, and matrices. For the latest products and information, please visit us online at www.eraqc.com

Experience. Speed. Reliability.

Did you know that our chemists have prepared more than 20,000 unique custom standards?

Custom projects cover a range of analytes, concentrations, and matrices. Whether it is one standard or one hundred, our chemists regularly prepare standards for a range of needs and situations including managed methodology studies, project or site-specific matrices, project or sample-specific limits, and ultra-trace to percent level concentrations.

Examples of custom standards prepared:

- 10,000 mg/kg total organic carbon in soil
- Organic mercury in fish tissue
- Pesticides in freeze-dried spinach
- XRF metals in soil
- Speciated metal standards
- Organometallic standards

Certification of Custom Standards

Three options for certification of custom standards:

- Gravimetric/volumetric
- Analytical
- ISO 17034 certified reference materials*
- *Option is based on Waters ERA's ISO 17034 scope of accreditation.

From Simple to Complex and Everything in Between

A custom standard containing any analyte from the following programs can be supplied:

- Clean Water Act (CWA)
- Safe Drinking Water Act (SDWA)
- Resource Conservation and Recovery Act (RCRA)
- Superfund Contract Laboratory Program (CLP)
- Standards Council of Canada (SCC)
- Canadian Association for Laboratory Accreditation (CALA)
- Ontario Ministry of the Environment and Climate Change (MOECC) Safe Drinking Water Act (SDWA)

To request a custom quotation, please visit us online at www.eraqc.com/Resources/OrderForms or email us at info@eraqc.com

Custom Standards

Performance Evaluation With Double-Blind Project

Gain a level of confidence with tangible evidence that your laboratory is meeting all quality objectives through a doubleblind performance evaluation.

The key to evaluating the real performance of your laboratory is in finding the proper blend of realistic sample designs and accurate, stable analyte concentrations.

Here is how a performance evaluation program works:

- Specify the matrices, analytes, and concentrations. If a stock standard is not available, we can design and prepare custom PE standards.
- Send us your empty sample bottles, labels, chain-ofcustody forms, and sample coolers.
- 3. We prepare, dilute (if necessary), and preserve the standards; fill your sample bottles; and, return the samples to you via overnight delivery service. You'll receive Waters ERA's certified values and performance acceptance limits (PALs) under separate sealed cover.

- Integrate the standards into your sampling event or introduce them into your lab's routine sample load.
- Your lab analyzes the blind PE standards along with routine samples.
- Compare your lab's results to Waters ERA's certified values and performance acceptance limits.

We can help you design a double-blind project that matches your project-specific needs. Speak with a Waters ERA representative today to begin the process of understanding the real performance of your laboratory.

Customer Service Manager

CUSTOM STANDARD QUOTATION REQUEST FORM

Contact Name:			Date	
Waters ERA Customer #:	Phone:		Fax:	
Company Name:		Email:		
Bill to:		Ship to:		
(shipping address is the same as billing a		Date Needed:		
Additional/Special Requirements (packaging,	shipping, etc.):			
Anal	lytes	CAS#	Concentrations	Units
1	yes	CAO II	Solicentrations	Onito
2				
3				
4				
5				
6				
7				
8				
9				
0				
		<u>'</u>		
Sample Description (for label):				
Matrix/Solvent:				
Preservative:				
Mass/Volume per Container:			Number of Con	tainers:
ntended Use (calibration, QC, etc.):				
Prep/Analytical Method:				
	Anna Dilination Incar	uotional		
Select: Ready-to-use Concer				

■ Waters ERA provides blind standards to help you evaluate your laboratory's performance. Call and speak with an ERA representative to learn more.

Email this form to info@eraqc.com or fax to 303.421.0159.

For immediate assistance with a customs quote, call Waters ERA at 800.372.0122 or 303.431.8454 and speak with a Waters ERA Customer Service Representative.

CALIBRATION STANDARDS

A variety of inorganic standards including metals, anions, pH, and other common inorganics that can be used for primary calibration or to prepare second source calibration standards.

CRM: A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability.

A complete listing of ERA's CRMs can be found on our Scope of Accreditation for general requirements for competence of reference material producers available at www.eraqc.com/AboutERA/Accreditations.

RM: A material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.

Contents

Description	Page
AA/ICP Metals	78
Anions	77
Cations by Ion Chromatography - 100 mg/L	76
Cations by Ion Chromatography - 1000 mg/L	76
Chemical Oxygen Demand (COD) - 1000 mg/L	76
Flame AA Cations	78
Flame AA Trace Metals	78
ICP Trace Metals	78
ICP-MS Major Cations	77
ICP-MS Metals	77
ICP-MS Trace Metals	77
Inorganics - 1000 mg/L	76
Ion Chromatography	77
lons - 1000 mg/L	76
MBAS/LAS Surfactants - 1000 mg/L	76
Metals - 1000 mg/L	77
pH Buffers	78
Phenol - 1000 mg/L	76
Sulfide - 1000 mg/L	76
Total Kjeldahl Nitrogen (TKN) - 1000 mg/L	76
Total Organic Carbon (TOC) - 1000 mg/L	76
Total Organic Halides (TOX) - 1000 mg/L	76

1000 mg/L Standards

Standards can be used for primary calibration or to prepare second source calibration check standards. They are analytically traceable to NIST SRM's where available, and are guaranteed stable for one year. The certification documentation includes manufacturing uncertainties, traceability summaries and densities to aid in performing gravimetric dilutions. The documentation for metal standards includes impurities.

Inorganics – 1000 mg/L

Chemical Oxygen Demand (COD)

500 mL Bottle Cat. #974 125 mL Bottle Cat. #042

One 1000 mg/L standard preserved with H₂SO₄ in an amber glass bottle.

Total Kjeldahl Nitrogen (TKN)

500 mL Bottle Cat. #996 125 mL Bottle Cat. #043

One 1000 mg/L standard preserved with HCl in a poly bottle.

MBAS/LAS Surfactants

Cat. #975

One 15 mL screw-cap vial with LAS at 1000 mg/L preserved with H2SO4.

Total Organic Carbon (TOC)

Cat. #978

One 500 mL amber glass bottles with TOC at 1000 mg/L preserved with H₂SO₄.

Total Organic Halides (TOX)

Cat. #976

One 2 mL flame-sealed ampule with TOX at 1000 mg/L in methanol.

Phenol

Cat. #982

One 500 mL amber glass bottle with phenol at 1000 mg/L preserved with H₂SO₄.

Sulfide

Cat. #999

One 10 mL flame-sealed ampule containing 1000 mg/L sulfide preserved with NaOH and zinc acetate.

lons - 1000 mg/L

Parameter	Matrix	500 mL Bottle	125 mL Bottle
Acetate	H ₂ O	_	Cat. #78202
Ammonia as NH ₃	H ₂ O	Cat. #986	Cat. #044
Ammonia as N	H ₂ O	Cat. #985	Cat. #045
Bromate	H ₂ O	_	Cat. #065
Bromide	H ₂ O	Cat. #987	Cat. #046
Chlorate	H ₂ O	_	Cat. #066
Chloride	H ₂ O	Cat. #988	Cat. #047
Chlorite	H ₂ O	_	Cat. #067
Complex cyanide*	NaOH	Cat. #998	Cat. #049
Cyanide (free)	NaOH	Cat. #997	Cat. #048
Fluoride	H ₂ O	Cat. #989	Cat. #050
lodide	H ₂ O	_	Cat. #78212
Nitrate as NO ₃	H ₂ O	Cat. #992	Cat. #051
Nitrate as N	H ₂ O	Cat. #991	Cat. #052
Nitrite as N	H ₂ O	Cat. #990	Cat. #053
Perchlorate	H ₂ O	_	Cat. #068
Phosphate as PO ₄	H ₂ O	Cat. #994	Cat. #060
Phosphate as P	H ₂ O	Cat. #993	Cat. #061
Sulfate	H ₂ O	Cat. #995	Cat. #062

^{*}Dangerous good. Requires special shipping.

Cations by Ion Chromatography – 100 mg/L

Parameter	Matrix	125 mL Bottle
Ammonium as NH ₄	H ₂ O	Cat. #78102
Ammonium as N	H ₂ O	Cat. #78104

Cations by Ion Chromatography – 1000 mg/L

Parameter	Matrix	125 mL Bottle
Calcium	H ₂ O	Cat. #K10
Magnesium	H ₂ O	Cat. #K11

Metals - 1000 mg/L

Parameter	Matrix		125 mL Bottle
Aluminum	HNO ₃	DG	Cat. #011
Arsenic	HNO ₃	DG	Cat. #013
Beryllium	HNO ₃	DG	Cat. #015
Bismuth	HNO ₃	DG	Cat. #K01
Calcium	HNO ₃	DG	Cat. #018
Chromium	HNO ₃	DG	Cat. #020
Chromium VI	H ₂ O	_	Cat. #019
Cobalt	HNO ₃	DG	Cat. #021
Copper	HNO ₃	DG	Cat. #022
Iron	HNO ₃	DG	Cat. #023
Lead	HNO ₃	DG	Cat. #024
Lithium	HNO ₃	DG	Cat. #K04
Magnesium	HNO ₃	DG	Cat. #025
Manganese	HNO ₃	DG	Cat. #026
Mercury	HNO ₃	DG	Cat. #027
Molybdenum	HNO ₃	DG	Cat. #028
Nickel	HNO ₃	DG	Cat. #029
Phosphorus	HNO ₃	DG	Cat. #063
Potassium	HNO ₃	DG	Cat. #030
Selenium	HNO ₃	DG	Cat. #031
Silica	H ₂ O	_	Cat. #064
Silicon	HNO ₃	DG	Cat. #032
Silver	HNO ₃	DG	Cat. #033
Sodium	HNO ₃	DG	Cat. #034
Strontium	HNO ₃	DG	Cat. #035
Thallium	HNO ₃	DG	Cat. #036
Tin	HCI	DG	Cat. #037
Titanium	HCl	DG	Cat. #038
Vanadium	HNO ₃	DG	Cat. #039
Yttrium	HNO ₃	DG	Cat. #K08
Zinc	HNO ₃	DG	Cat. #040

DG - Dangerous good. Requires special shipping.

Other metals, concentrations, and volumes are also available.

Call Waters ERA Customer Service for more information.

ICP-MS Metals

These standards come with a Certificate of Traceability and Uncertainty. Use for initial as well as continuing calibration and tuning verification. Provided as convenient concentrates with densities allowing you to easily perform gravimetric dilutions.

ICP-MS Trace Metals

CRM Cat. #TMS001*

One 125 mL screw-cap poly bottle preserved with HNO₃ and tartaric acid*

Aluminum10.0 mg/L
Antimony10.0 mg/L
Arsenic10.0 mg/L
Barium10.0 mg/L
Beryllium10.0 mg/L
Cadmium10.0 mg/L
Chromium10.0 mg/L
Cobalt10.0 mg/L
Copper10.0 mg/L
Iron10.0 mg/L
Lead10.0 mg/L

Manganese	10.0 mg/L
Molybdenum	10.0 mg/L
Nickel	10.0 mg/L
Selenium	10.0 mg/L
Silver	10.0 mg/L
Thallium	10.0 mg/L
Thorium	10.0 mg/L
Uranium	10.0 mg/L
Vanadium	10.0 mg/L
Zinc	10.0 mg/L

^{*}Dangerous good. Requires special shipping

ICP-MS Major Cations

CRM Cat. #TMS002*

One 125 mL screw-cap poly bottle preserved with HNO3*.

Calcium	50.0 mg/L	Potassium	50.0 mg/L
Magnesium	50.0 mg/L	Sodium	50.0 mg/L

^{*}Dangerous good. Requires special shipping.

Anions

Ion Chromatography

CRM

Cat. #981

One 15 mL screw-cap vial yields up to 200 mL after dilution. Designed to calibrate or verify IC calibrations.

Call for anion standards at lower levels.

Bromide	0.2-20 mg/L	Nitrate as N	0.2-20 mg/L
Chloride	0.2-20 mg/L	Phosphate as P	0.5-30 mg/L
Fluoride	0.1-10 mg/L	Sulfate	0.5-30 mg/L

AA/ICP Metals

All metals standards come with a Certificate of Traceability. The ICP Trace Metals standard also includes uncertainties. Use as initial as well as continuing calibration verification.

Flame AA Trace Metals

CRM

Cat. #508

One 24 mL screw-cap vial, preserved with $\rm HNO_3$, yields up to 500 mL after dilution. Designed for flame AA. Includes aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc.

Flame AA Cations

CRM Cat. #530

One 15 mL screw-cap vial, preserved with HNO3, yields up to 250 mL after dilution.

Use with ICP, IC, and AA methods.

Calcium10-200 mg/L	
Magnesium10-200 mg/L	
Potassium5-100 mg/L	
Sodium10-250 mg/L	

ICP Trace Metals

CRM Cat. #524*

One 500 mL whole-volume standard, preserved with HNO₃ and HCl, is ready-to-use*

•	
Aluminum	10.0 mg/L
Antimony	1.0 mg/L
Arsenic	1.0 mg/L
Barium	1.0 mg/L
Beryllium	
Bismuth	1.0 mg/L
Boron	
Cadmium	
Calcium	10.0 mg/L
Chromium	1.0 mg/L
Cobalt	
Copper	1.0 mg/L
Iron	
Lanthanum	10.0 mg/L
Lead	10.0 mg/L
Magnesium	10.0 mg/L
Manganese	1.0 mg/L
Molybdenum	
Nickel	1.0 mg/L
Phosphorus	1.0 mg/L
Potassium	
Selenium	10.0 mg/L
Sodium	
Strontium	1.0 mg/L
Tin	
Titanium	1.0 mg/L
Vanadium	1.0 mg/L
Zinc	

^{*}Dangerous good. Requires special shipping.

pH Buffers

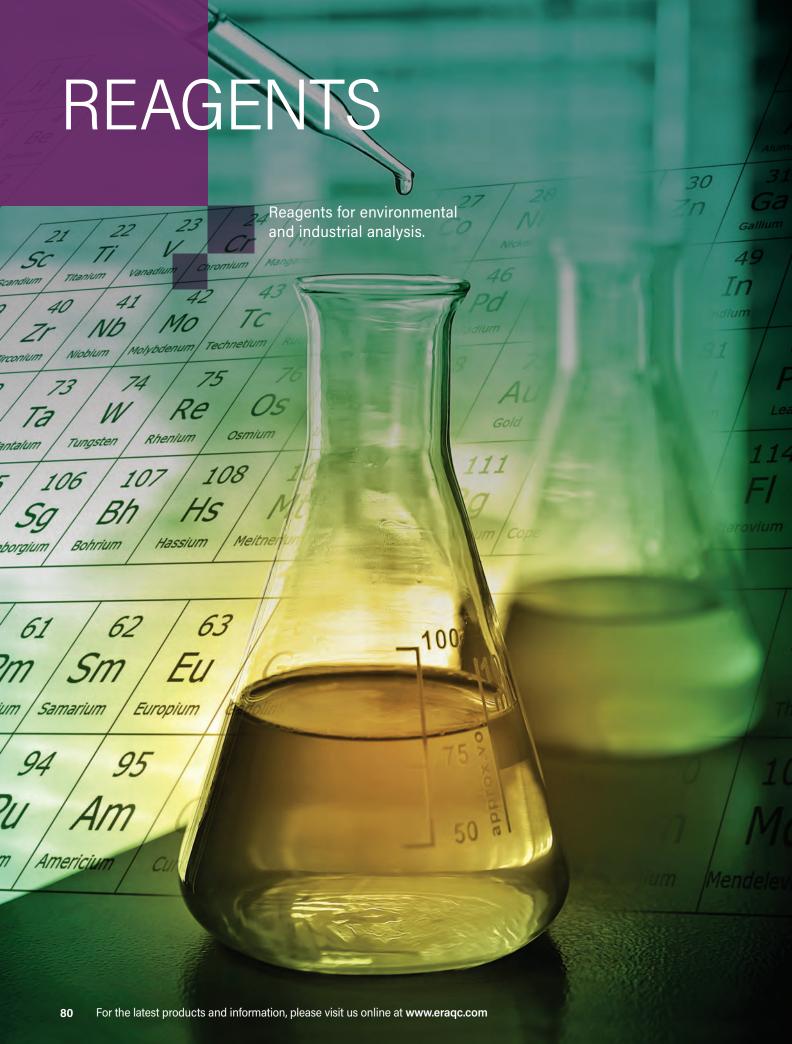
Our pH Buffers are analytically traceable to NIST SRMs, mercury free, guaranteed stable for at least one year after your receipt, and are supplied with a full certificate of analysis. Choose single bottles or convenient six-bottle cases.

Value	Volume	Single Bottle	Six-Bottle Case
pH 4.00	1 pint	Cat. #127	Cat. #128
pH 7.00	1 pint	Cat. #131	Cat. #132
pH 10.00	1 pint	Cat. #135	Cat. #136
Case of 2 ea.	Pints		Cat. #141

Eric Schmidt
Production Technician
Years with Waters ERA: 26

Tony CiaccoChemist
Years with Waters ERA: 22

DON'T STRESS THE TEST


We understand one of the biggest challenges you face in your laboratory is time. To help reduce laboratory stress, we provide you with final PT results in just two business days.

- Gain peace of mind knowing that you passed your PT quickly
- Identify the root cause of analysis problems faster
- Implement corrective actions sooner to improve the defensibility of results in less time

When Time Is Not On Your Side

A critical evaluation is just that – critical. Sometimes you need to quickly demonstrate corrective action or confirm a new method, meaning you can't wait for a regularly scheduled PT. QuiK Response™ PTs are on-demand Proficiency Tests that return final results in just two business days of data entry.

Ask your Waters ERA representative or an authorized sales partner about QuiK Response PTs. For more information, contact our customer service team at 800.372.0122 / +1.303.431.8454. or email info@eraqc.com.

Contents

Description	Page
EDTA	82
Hydrochloric Acid	82
Miscellaneous	83
pH	82
Potassium Hydroxide	82
Silver Nitrate	83
Sodium Hydroxide	83
Sodium Thiosulfate	83
Sulfuric Acid	83

Reagents

Industrial reagents with tolerances of +/- 0.5%, and will hold the certified value lot-to-lot within 0.5%. Our reagents are shipped with a certificate of analysis and are homogeneous at a 95% confidence interval.

EDTA	
0.01 M, 1 Gallon	Cat. #183160
0.02 M, 1 Gallon	Cat. #183212
0.1 M, 1 Liter	Cat. #183118
0.1 M, 1 Gallon	Cat. #183120*
0.1 M, 5 Gallon	Cat. #187525*

Hydrochloric Acid		
0.01 N, 1 Liter	DG	Cat. #183026
0.01 N, 1 Gallon	DG	Cat. #183028*
0.01 N, 5 Gallon	DG	Cat. #187503*
0.1 N, 1 Liter	DG	Cat. #183030
0.1 N, 1 Liter, In IPA	DG	Cat. #184001
0.1 N, 2.5 Liter	DG	Cat. #183010*
0.1 N, 1 Gallon	DG	Cat. #183032
0.1 N, 5 Gallon	DG	Cat. #187506
0.25 N,1 Liter	DG	Cat. #183034*
0.25 N,1 Gallon	DG	Cat. #183036*
0.25 N, 5 Gallon	DG	Cat. #187507*
0.5 N, 1 Liter	DG	Cat. #183038*
0.5 N, 1 Gallon	DG	Cat. #183040
0.5 N, 5 Gallon	DG	Cat. #187508
0.65 N, 5 Gallon	DG	Cat. #183016
1.0 N, 1 Liter	DG	Cat. #183042
1.0 N, 1 Gallon	DG	Cat. #183044
1.0 N, 5 Gallon	DG	Cat. #187510*

DG - Dange	erous anod	Requires	snecial	shinning
Du Dunge	nous good	ricquires	Special	or inppiring.

рН	
pH 2 Buffer, No Color (1 Pint)	Cat. #183004
pH 2 Buffer, No Color (1 Liter)	Cat. #183184
pH 2 Buffer, No Color (1 Gallon)	Cat. #187027
pH 2 Buffer, No Color (5 Gallon)	Cat. #183186*
pH 4 Buffer, No Color (1 Pint)	Cat. #183005
pH 4 Buffer, No Color (1 Liter)	Cat. #183180
pH 4 Buffer, No Color (1 Gallon)	Cat. #183181*
pH 4 Buffer, No Color (5 Gallon)	Cat. #183182
pH 6 Concentrated Buffer, No Color (2.5 Liter)	Cat. #183012
pH 7 Buffer, No Color (1 Pint)	Cat. #183006
pH 7 Buffer, No Color (1 Liter)	Cat. #183187
pH 7 Concentrated Buffer, No Color (2.5 Liter)	Cat. #183013
pH 7 Buffer, No Color (1 Gallon)	Cat. #183188*
pH 7 Buffer, No Color (5 Gallon)	Cat. #183189
pH 10 Buffer, No Color (1 Pint)	Cat. #183007
pH 10 Buffer, No Color (1 Liter)	Cat. #183190
pH 10 Buffer, No Color (1 Gallon)	Cat. #183191*
pH 10 Buffer, No Color (5 Gallon)	Cat. #183192
pH 4 Buffer, Red (1 Gallon)	Cat. #187026
pH 4 Buffer, Red (5 Gallon)	Cat. #183217
pH 7 Buffer, Yellow (1 Gallon)	Cat. #187028
pH 7 Buffer, Yellow (5 Gallon)	Cat. #183218
pH 10 Buffer, Blue (1 Gallon)	Cat. #187029
pH 10 Buffer, Blue (5 Gallon)	Cat. #183219

Potassium Hydrox	ide	
0.01 N, 1 Liter	DG	Cat. #183090
0.01 N, 1 Gallon	DG	Cat. #183092
0.01 N, 5 Gallon	DG	Cat. #187521*
0.1 N, 1 Liter	DG	Cat. #183094
In IPA, 0.1 N, 1 Gallon	DG	Cat. #183211*
0.1 N, 1 Gallon	DG	Cat. #183096*
0.1 N, 5 Gallon	DG	Cat. #187522
0.25 N, 1 Liter	DG	Cat. #183098*
0.25 N, 1 Gallon	DG	Cat. #183100*
0.25 N, 5 Gallon	DG	Cat. #187523*
0.5 N, 1 Liter	DG	Cat. #183102*
0.5 N, 1 Gallon	DG	Cat. #183104*
0.5 N, 5 Gallon	DG	Cat. #187524*

DG - Dangerous good. Requires special shipping.

^{*} This item is a custom order product. Please contact us for ordering details.

Silver Nitrate		
0.1 N, 1 Liter	DG	Cat. #183110*
0.1 N, 1 Gallon	DG	Cat. #183112*
0.25 N, 1 Liter	DG	Cat. #183114*
0.25 N, 1 Gallon	DG	Cat. #183116*

Sodium Hydroxide	е	
0.01 N, 1 Liter	DG	Cat. #183070
0.01 N, 1 Gallon	DG	Cat. #183072*
0.01 N, 5 Gallon	DG	Cat. #187516*
0.1 N, 1 Liter	DG	Cat. #183074
0.1 N, 1 Gallon	DG	Cat. #183076
0.1 N, 5 Gallon	DG	Cat. #187517
0.25 N, 1 Liter	DG	Cat. #183078*
0.25 N, 1 Gallon	DG	Cat. #183080*
0.25 N, 5 Gallon	DG	Cat. #187518
0.5 N, 1 Gallon	DG	Cat. #183082*
0.5 N, 5 Gallon	DG	Cat. #187519
1.0 N, 1 Liter	DG	Cat. #183086
1.0 N, 1 Gallon	DG	Cat. #183088*
1.0 N, 5 Gallon	DG	Cat. #183156*

DG - Dangerous	good.	Requires	special	shipping	1.

Sodium Thiosulfate	
0.0394 N, 1 Gallon	Cat. #182002
0.0394 N, 5 Gallon	Cat. #182003
0.1 N, 1 Liter	Cat. #183126
0.1 N, 1 Gallon	Cat. #183128
0.25 N, 1 Liter	Cat. #183130
0.25 N, 1 Gallon	Cat. #183132*

Sulfuric Acid		
0.01 N, 1 Liter	DG	Cat. #183048
0.01 N, 1 Gallon	DG	Cat. #183049*
0.02 N, 1 Liter	DG	Cat. #183050
0.02 N, 1 Gallon	DG	Cat. #183052
0.02 N, 5 Gallon	DG	Cat. #187511
0.05 N, 1 Liter	DG	Cat. #183003*
0.1 N, 1 Liter	DG	Cat. #183054
0.1 N, 1 Gallon	DG	Cat. #183056*
0.1 N, 5 Gallon	DG	Cat. #187512*
0.2 N, 1 Liter	DG	Cat. #183058*
0.2 N, 1 Gallon	DG	Cat. #183060*
0.2 N, 5 Gallon	DG	Cat. #187514*
0.5 N, 1 Liter	DG	Cat. #183062*
0.5 N, 1 Gallon	DG	Cat. #183064*
1.0 N, 1 Liter	DG	Cat. #183066
1.0 N, 1 Gallon	DG	Cat. #183068*
1.0 N, 5 Gallon	DG	Cat. #187515

Miscellaneous		
KOH 5 M, KCN 1 M, 5 Gallon	_	Cat. #183213
Manganese Standard, 40 g/L, 1 Liter	DG	Cat. #183008
Manganese Standard, 55 g/L, 1 Liter	DG	Cat. #183009
TISAB, Fluoride Buffer, 1 Gallon	_	Cat. #183162
Barium Perchlorate, 0.1 N, 1 Liter	_	Cat. #183017
Potassium Dichromate, 0.1 N, 1 Liter	DG	Cat. #183221
Potassium Permanganate, 0.1 N, 2.5 Liter	DG	Cat. #183001
Ferrous Ammonium Sulfate, 0.25 N, 1 Gallon	DG	Cat. #183011
Phenolphthalein, 0.5%, 1 Pint	DG	Cat. #183168*
Sodium Carbonate, 1.0 N, 1 Liter	_	Cat. #183172
Sodium Carbonate, 25 g/L, 10 Liter	_	Cat. #183002

DG – Dangerous good. Requires special shipping.

Kathie Paulling
Project Coordinator Customs, Reagents
Years with Waters ERA: 16

^{*} This item is a custom order product. Please contact us for ordering details.